
1. DuraCloud Release 2.3 . 2
1.1 DuraCloud Chunker Tool . 2
1.2 Logging Configuration . 5
1.3 DuraCloud REST API . 6

1.3.1 REST API Examples Using curl . 27
1.4 Release Notes . 35
1.5 DuraCloud Sync Tool . 44

1.5.1 DuraCloud Sync Tool - Command Line . 46
1.5.2 DuraCloud Sync Tool - Graphical UI . 54

1.6 DuraCloud Java Clients . 55
1.7 DuraCloud Administration . 57
1.8 DuraCloud Services . 58
1.9 DuraCloud Features . 61
1.10 DuraCloud Retrieval Tool . 63
1.11 DuraCloud Stitcher Tool . 66
1.12 DuraCloud Upload Tool . 68

1.12.1 Upload Tool Help . 70
1.13 Known Issues . 72
1.14 Deploying DuraCloud from Binaries . 72
1.15 Service Development Guide . 74
1.16 Building DuraCloud Software from Source . 76
1.17 DuraCloud Storage . 82
1.18 DuraCloud Security . 83

DuraCloud Release 2.3

User Documentation
Release Notes
Known Issues
DuraCloud Features
DuraCloud Storage
DuraCloud Services
DuraCloud REST API
DuraCloud Security
DuraCloud Java Clients
DuraCloud Upload Tool
DuraCloud Sync Tool
DuraCloud Retrieval Tool
DuraCloud Chunker Tool
DuraCloud Stitcher Tool
DuraCloud Administration

Developer Documentation
Deploying DuraCloud from Binaries
Building DuraCloud from Source
Service Development Guide
Logging Configuration

DuraCloud Chunker Tool

Introduction

The Chunker Tool is a utility which was created in order to provide a simple way to copy files from a local file system
to DuraCloud in a "one-off" manner. Actually, although the common case is to use this tool to copy one or more files
to DuraCloud, it may also be run to copy files to another location on the local file system.

Download

Download the Chunker Tool from the Downloads page.

Operational notes
If you want to jump directly into using the tool, download it from the link above and run the following command

java -jar chunk-{version}-driver.jar

The resulting usage statement (detailed below) should be enough to help you get started.

The Chunker Tool allows you to copy multiple local files and directories into a single space within DuraCloud.
The names of the objects which are added to DuraCloud will contain all of the directory elements in the path
starting from the first element below the base directory down to the individual file names.

Prerequisites

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

As of DuraCloud version 2.2.0, the Chunker Tool requires Java 7 to run. The latest version of
Java can be downloaded from here.

You must have Java version 7 or above installed on your local system. If Java is not installed, or if a previous
version is installed, you will need to and install Java 7. To determine if the correct version of Java isdownload
installed, open a terminal or command prompt and enter

java -version

The version displayed should be 1.7.0 or above. If running this command generates an error, Java is likely
not installed.

You must have downloaded the Chunker Tool. It is available as a link near the top of this page.

Using the Chunker Tool
To run the Chunker Tool, open a terminal or command prompt and navigate to the directory where the
Chunker Tool is located and run the above command.
The following options are available when running the Chunker Tool

Short Option Long Option Arguments Description

-a --add <f t s> add content from
directory:<f> to space or
directory:<t> of
maximum chunk
size:<s>, where the
chunk size must have a
unit suffix of K,M, or G
—
If the -c option is
provided, the destination
space <t> will be
interpreted as the name
of a space in the
DuraCloud account
found at the host:port
provided in the -c option,
otherwise the
destination space will be
interpreted as a
directory on the local file
system.

-c --cloud-store <host:port> use cloud store found at
<host>:<port> as
content destination

http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/index.jsp
http://www.java.com

-d --dir-filter <l> limit processed
directories to those
listed in file-list:<l>
—
If the -d option is not
used, all directories
under the base source
directory provided in the
-a option will be
included. The file
specified by this option
is expected to contain a
list of directory names
each on there own line.
The list is converted to
an OrFileFilter from Apa
che Commons IO

-f --file-filter <l> limit processed files to
those listed in file-list:<l>
–
The file specified by this
option is expected to
contain a list of file
names each on there
own line. The list is
converted to an
OrFileFilter from Apache
Commons IO

-g --generate <outFile numBytes> generate test data to
<outFile> of <size>
bytes
—
This option does not
copy any files, it only
generates test data files
of the size specified in
the give argument.

-i --ignore-large-files no args if this option is set, files
over the chunk size
specified in the 'add'
option will be ignored.

-p --password <password> password of duracloud
instance

-u --username <username> username of duracloud
instance

http://commons.apache.org/io/api-release/index.html
http://commons.apache.org/io/api-release/index.html
http://commons.apache.org/io/api-release/index.html
http://commons.apache.org/io/api-release/index.html

-x --exclude-chunk-md5s no args if this option is set,
chunk MD5s will NOT be
preserved in the
manifest
—
It is expected that this
option is rarely used, but
in certain situations
where the MD5s of the
segments of a file that
needed to be chunked
because the parent file
was larger than the limit
set in the -a option, not
generating these MD5s
improves performance.

Creating your own Chunks

If you are interested in creating chunked files in DuraCloud using your own tools, you may do so by adhering to the
XML schema used by DuraCloud to create chunks.

Download the Chunker XSD from the Downloads page

Logging Configuration

Introduction

The logging framework used in the DuraCloud application is with the implementation staticallySLF4J LogBack
bound at runtime.
See the website for a detailed description of the configuration options.LogBack

The application also contains bridges for both Log4J and Commons-Logging which translates any underlying,
dependency libraries which are configured to write to these frameworks into the SLF4J API. The effect is that all
logging is channeled through the SLF4J configuration.

General Usage
By default, if no configuration file is found by LogBack, the logging level is set to "DEBUG" and the appender
is set to "STDOUT"
When starting any DuraCloud application, a LogBack configuration file may be specified by using the
following system variable

java -Dlogback.configurationFile={path-to-logging-configuration-file}
-jar any-application

Additionally, LogBack will use the file named "logback.xml" found at the top of the classpath for configuration
An example logback.xml file can be found on the Downloads page

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads
http://http://www.slf4j.org/docs.html
http://http://logback.qos.ch/manual/configuration.html
http://http://logback.qos.ch/manual/configuration.html
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

1<?xml version="1.0" encoding="UTF-8"?>
2
3<configuration >
4 <!--<configuration debug="true" scan="true">-->
5 <jmxConfigurator/>
6 <property name="LOG_FILENAME"
value="/home/duraspace/logs/duracloud-osgi.log" />
7
8 <appender name="DURACLOUD"
class="ch.qos.logback.core.rolling.RollingFileAppender">
9 <File>${LOG_FILENAME}</File>
10 <encoder>
11 <pattern>%-14p %d{yyyy/MM/dd HH:mm:ss} [%t] (%F:%L\\) [%M(\\)]
- %m%n</pattern>
12 </encoder>
13 <rollingPolicy
class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
14 <maxIndex>5</maxIndex>
15 <FileNamePattern>${LOG_FILENAME}.%i</FileNamePattern>
16 </rollingPolicy>
17 <triggeringPolicy
class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
18 <MaxFileSize>20MB</MaxFileSize>
19 </triggeringPolicy>
20 </appender>
21 <appender name="STDOUT"
class="ch.qos.logback.core.ConsoleAppender">
22 <encoder>
23 <pattern>%-14p %d{yyyy/MM/dd HH:mm:ss} [%t] (%F:%L\\) [%M(\\)]
- %m%n</pattern>
24 </encoder>
25 </appender>
26 <logger name="org.duracloud" level="DEBUG" additivity="false">
27 <appender-ref ref="DURACLOUD"/>
28 </logger>
29 <root level="WARN">
30 <appender-ref ref="STDOUT"/>
31 </root>
32</configuration>

Notes on the above logback.xml file
on line 4, the attribute "debug" applies to displaying configuration information when LogBack starts up
if set to "true"
on line 4, the attribute "scan" configures LogBack to re-read the given logback.xml every 60 seconds
(by default) for updates
on line 26, the attribute "additivity" configures the given logger to inherit the configuration of the parent
logger, in this case, the root logger
on line 26, if the "additivity" attribute were set to "true", all "DURACLOUD" log output would also log to
"STDOUT"

DuraCloud REST API

DuraCloud REST API methods:

Notes
All Applications

Initialize Security Users

DuraStore
Initialize Stores
Is Initialized
Get Stores
Get Spaces
Get Space
Get Space Properties
Get Space ACLs
Create Space
Set Space ACLs
Delete Space
Get Content
Get Content Properties
Store Content
Copy Content
Set Content Properties
Delete Content
Get Tasks
Perform Task

Tasks

DuraService
Initialize Services
Is Initialized
Get Services
Get Service
Get Deployed Service
Get Deployed Service Properties
Deploy Service
Update Service Configuration
UnDeploy Service

DurAdmin
Initialize Application
Is Initialized

DuraBoss
Initialize Application
Is Initialized
Get Latest Storage Report
Get Storage Report List
Get Storage Report
Get Storage Report Info
Start Storage Report
Cancel Storage Report
Schedule Storage Report

Cancel Storage Report Schedule
Get Deployed Services Report
Get Completed Services Report
Get Completed Services Report List
Get Services Report
Get Executor Status
Get Supported Executor Actions

Executor Actions

Perform an Executor Action
Shutdown Executor
Create Initial Audit Log
Get Audit Logs
Shutdown Auditor
Get Content Manifest

Notes

Each of the methods below has specific security requirements. See for moreDuraCloud Security
information

Due to which does not properly handle requests redirected from http to https, it isan issue
recommended that all REST API requests use https directly.

Examples calling the API defined below with the Unix utility "curl" can be found here

All Applications

https://jira.duraspace.org/browse/DURACLOUD-255

Security Initialization REST Methods

Initialize Security Users

Purpose: Allows the initialization of authorized users
Request:

 POST https://host:port/durastore/security
 POST https://host:port/duraservice/security
 POST https://host:port/duradmin/security
 POST https://host:port/durareport/security

Request Body: XML similar to:

<dur:security-users schemaVersion="0.2" xmlns:dur="duracloud.org">
 <security-user>
 <username>username-0</username>
 <password>password-0</password>
 <enabled>true</enabled>
 <accountNonExpired>true</accountNonExpired>
 <credentialsNonExpired>true</credentialsNonExpired>
 <accountNonLocked>true</accountNonLocked>
 <grantedAuthorities>ROLE_USER</grantedAuthorities>
 </security-user>
 <security-user>
 <username>username-1</username>
 <password>password-1</password>
 <enabled>false</enabled>
 <accountNonExpired>false</accountNonExpired>
 <credentialsNonExpired>false</credentialsNonExpired>
 <accountNonLocked>false</accountNonLocked>
 <grantedAuthorities>ROLE_USER ROLE_ADMIN</grantedAuthorities>
 </security-user>
</dur:security-users>

Response Code: 200 (on success)
Response Body: "Initialization Successful" (on success)

DuraStore

Purpose: DuraStore is the application through which DuraCloud manages storage. The DuraStore REST API
provides access to storage by mediating the underlying storage provider APIs to allow access to multiple cloud
storage options through a single API.

Initialization REST Methods

Initialize Stores

Purpose: Allows the initialization of storage provider accounts
Request: POST https://host:port/durastore/init

Request Body: XML similar to:

<storageProviderAccounts>
 <storageAcct ownerId='0' isPrimary='true'>
 <id>1</id>
 <storageProviderType>AMAZON_S3</storageProviderType>
 <storageProviderCredential>
 <username>username</username>
 <password>password</password>
 </storageProviderCredential>
 </storageAcct>
</storageProviderAccounts>

Response Code: 200 (on success)
Response Body: "Initialization Successful" (on success)

Is Initialized

Purpose: Performs a check to determine if the DuraStore application has been initialized
Request: GET https://host:port/durastore/init

Response Code: 200 (if the application has been initialized), 503 (if the application has NOT been
initialized)
Response Body: Text indicating whether initialization has occurred.

Store REST Methods

Get Stores

Purpose: Provides a listing of available storage providers accounts (without credentials)
Request: GET https://host:port/durastore/stores

Parameters: None
Response Code: 200 (on success)
Response Body: XML similar to:

<storageProviderAccounts>
 <storageAcct isPrimary='true'>
 <id>1</id>
 <storageProviderType>AMAZON_S3</storageProviderType>
 </storageAcct>
 <storageAcct isPrimary="false">
 <id>2</id>
 <storageProviderType>RACKSPACE</storageProviderType>
 </storageAcct>
</storageProviderAccounts>

Space REST Methods

Get Spaces

Purpose: Provides a listing of all of the spaces that a customer has created
Request: GET ? (storeID)https://host:port/durastore/spaces

Response Code: 200 (on success)
Response Body: XML similar to:

<spaces>
 <space id="space1" />
 <space id="space2" />
</spaces>

Get Space

Purpose: Provides a listing of the contents of a space along with space properties
Request: GET ? (storeID) (prefix)https://host:port/durastore/spaceID

 (maxResults) (marker)

storeID (optional) - ID of the content storage provider to query (default is primary store)
prefix (optional) - Only retrieve content ids with this prefix (default is all content ids)
maxResults (optional) - The maximum number of content IDs to return in the list (default
is 1000)

: the maximum allowable value for maxResults is 1000. Any larger value will benote
reduced to 1000.
marker (optional) - The content ID marking the last item in the previous set (default is the
first set of ids)

Response Code: 200 (on success)
Response Body: XML similar to:

<space id="space1">
 <item>Image 1</item>
 <item>Image 2</item>
</space>

Response Headers: All available space properties, example:

x-dura-meta-space-count: 65
x-dura-meta-space-created: Mon, 01 Jan 2000 08:00:00 EST

Get Space Properties

Purpose: Provides all space properties
Request: HEAD ? (storeID)https://host:port/durastore/spaceID

Response Code: 200 (on success)
Response Headers: Same as for Get space (above)

Get Space ACLs

Purpose: Provides all space ACLs, with values of 'r' (read) and 'w' (read/write)
Request: HEAD ? (storeID)https://host:port/durastore/acl/spaceID

Response Code: 200 (on success)
Response Headers: All available space ACLs, example:

x-dura-meta-acl-user0: WRITE
x-dura-meta-acl-user1: WRITE
x-dura-meta-acl-group-curators: READ

Create Space

Purpose: Creates a new space
Request: PUT ? (storeID)https://host:port/durastore/spaceID

Response Code: 201 (on success)
Response Headers: Location of the new space (i.e. the URL used to create the space), example:

Location: https://myhost:8080/durastore/space1

Set Space ACLs

Purpose: Updates the ACLs associated with a space
Request: POST ? (storeID)https://host:port/durastore/acl/spaceID

Request Headers: For 'user' ACLs the header prefix must be 'x-dura-meta-acl-' and for 'groups' the
header prefix must be 'x-dura-meta-acl-group-'. Allowable values for ACL headers are: 'READ' and
'WRITE'.
Example:

x-dura-meta-acl-user0: WRITE
x-dura-meta-acl-user1: WRITE
x-dura-meta-acl-group-curators: READ

Response Code: 200 (on success)
Response Body: "Space $spaceID ACLs updated successfully" (on success)

Delete Space

Purpose: Deletes a space
Request: DELETE ? (storeID)https://host:port/durastore/spaceID

Response Code: 200 (on success)
Response Body: "Space $spaceID deleted successfully" (on success)

Content REST Methods

Get Content

Purpose: Retrieves a piece of content along with its properties
Request: GET ? (storeID)https://host:port/durastore/spaceID/contentID

 (attachment)

if attachment param value is true, a Content-Disposition header is included with the
response

Response Code: 200 (on success)
Response Body: The content stream
Response Headers: All available content properties, example:

Content-Type: text/plain
Content-Length: 5732
Content-MD5: 3456709234785097473839202
ETag: 3456709234785097473839202
x-dura-meta-content-name: Testing Content
x-dura-meta-content-owner: JSmith

Get Content Properties

Purpose: Retrieves the properties of a piece of content without the content itself
Request: HEAD ? (storeID)https://host:port/durastore/spaceID/contentID

Response Code: 200 (on success)
Response Headers: Same as Get content (above)

Store Content

Purpose: Adds a piece of content to the store
Request: PUT ? (storeID)https://host:port/durastore/spaceID/contentID

Request Body: Content to be added
Request Headers: Properties about the content, example:

Content-Type: text/plain
Content-MD5: 4cd56e137a93a1accb43c5d32f4afffb
x-dura-meta-content-name: Testing Content
x-dura-meta-content-owner: JSmith

Response Code: 201 (on success)
Response Headers:

MD5 checksum of stored content
ETag of stored content
Location of the new content (i.e. the URL used to create the content), example:

Content-MD5: 4cd56e137a93a1accb43c5d32f4afffb
ETag: 4cd56e137a93a1accb43c5d32f4afffb
Location: https://myhost:8080/durastore/space1/content1

Usage Notes
When the optional Content-MD5 header is included, the final checksum of the stored file is
compared against the MD5 value included in the header to ensure that the file was stored
correctly. If the header is not included, an MD5 checksum is computed as the file is
transferred to storage, and that value is used in the final comparison.

Copy Content

Purpose: Copies a piece of content from a source space to a destination space within a given
store
Request: PUT ? (storeID)https://host:port/durastore/spaceID/contentID

Request Body: must not exist
Request Headers: Copy source, example:

x-dura-meta-copy-source: space-id/content-id

Optional Request Headers: Copy source store, example:

x-dura-meta-copy-source-store: storeId

Response Code: 201 (on success)
Response Headers:

MD5 checksum of stored content
ETag of stored content
Location of the new content (i.e. the URL used to create the content), example:

Content-MD5: 4cd56e137a93a1accb43c5d32f4afffb
ETag: 4cd56e137a93a1accb43c5d32f4afffb
Location: https://myhost:8080/durastore/space1/content1

Usage Notes
The properties associated with the source content item are copied to the destination
content item.
The source and destination spaces may be the same.
Including the optional header indicates that the copy action should retrieve the source file
from a space in the specified storage provider. This allows for copying a file from one
storage provider to another.

Set Content Properties

Purpose: Updates the properties associated with a piece of content
Request: POST ? (storeID)https://host:port/durastore/spaceID/contentID

Request Headers: Same as Store content (above)
Response Code: 200 (on success)
Response Body: "Content $contentID updated successfully"

Delete Content

Purpose: Removes a piece of content from the store
Request: DELETE ? (storeID)https://host:port/durastore/spaceID/contentID

Response Code: 200 (on success)
Response Body: "Content $contentID deleted successfully"

Task REST Methods

Tasks are used to perform storage provider actions which cannot be performed in a
generic manner across multiple providers.

Get Tasks

Purpose: Provides a listing of all of the supported tasks for a given provider. Note that if no storeID
parameter is included, the task listing is provided for the primary storage provider.
Request: GET ? (storeID)https://host:port/durastore/task

Response Code: 200 (on success)
Response Body: XML similar to:

<list>
 <string>task1</string>
 <string>task2</string>
</list>

Perform Task

Purpose: Performs a particular task. Note that most tasks can be performed by only one storage
provider type.
Request: POST ? (storeID)https://host:port/durastore/task/taskName

Request Body: Parameters for task. Each task will expect parameters in a specific format, see
task listing for more details.
Response Code: 200 (on success)
Response Body: Response value for task, format varies by task.

Tasks

taskName Storage
Provider

Name Description Request
Body

Response
Body

enable-streami
ng

Amazon S3 Enable
Streaming
task

Enables
RTMP
streaming for
all files within
a DuraCloud
space through
the use of
Amazon's
Cloudfront
streaming
capability. This
task may take
up to 15
minutes to
complete.

Name of the
space for
which
streaming is to
be enabled

Text indicating
the results of
the task,
including the
streaming host

disable-stream
ing

Amazon S3 Disable
Streaming
task

Disables
streaming by
removing the
ability for
Cloudfront to
access files
within a space.
This does not
remove the
streaming
distribution,
only disables
its use, so
enabling
streaming on
the same
space again
can be
performed
much more
quickly. Some
content in the
space may
continue to be
available for
streaming up
to 24 hours
after
streaming has
been disabled.

Name of the
space for
which
streaming is to
be disabled

Text indicating
the results of
the task

delete-streami
ng

Amazon S3 Delete
Streaming
task

Removes a
streaming
distribution
created by the
enable-streami
ng task. This
task should be
performed
after
performing the
disable-stream
ing task. This
task may take
up to 15
minutes to
complete, after
which no
content in the
space will be
available for
streaming.

Name of the
space for
which
streaming is to
be deleted

Text indicating
the results of
the task

run-hadoop-jo
b

Amazon S3 Run Hadoop
Job task

Runs a
hadoop job
using
Amazon's
Elastic Map
Reduce
feature. A JAR
which
implements
the hadoop
interfaces is
expected to
have already
been loaded
into S3. This
JAR is used to
execute the
hadoop job.

A map
serialized into
XML which
includes, at a
minimum,
values for
jarContentId,
sourceSpaceI
d,
destSpaceId,
and
workSpaceId.

A map
serialized into
XML which
includes the
jobFlowId

describe-hado
op-job

Amazon S3 Describe
Hadoop Job
task

Retrieves
information
about a
hadoop job
running in
Amazon's
Elastic Map
Reduce

The Job Flow
ID

A map
serialized into
XML which
includes
information
about the
running job

stop-hadoop-j
ob

Amazon S3 Stop Hadoop
Job task

Stops a
hadoop job
running in
Amazon's
Elastic Map
Reduce

The Job Flow
ID

A map
serialized into
XML which
includes a
results key
with a value of
either success
or failure

noop Amazon S3 Test task Provides a
simple way to
test the calling
of tasks

Body content
is ignored

Text indicating
successful
task
completion

restore-conten
t

Amazon
Glacier

Restore
Content task

Provides the
capability to
request that
specific
content items
stored in
Glacier be
retrieved.
Content items
which are
retrieved are
made
available 3-5
hours after this
request is
made, and
remains
available for 2
weeks.

Name of the
space and the
content item in
the form:
spaceID/conte
ntID

Text indicating
that a restore
action has
been initiated
(or that a
restore is
already in
progress, in
the case of
duplicate
requests.)

DuraService

Purpose: DuraService is the application through which DuraCloud manages services. The DuraService REST API
provides the means by which services available in the DuraCloud service repository are deployed, configured, and
undeployed.

Resources: XML schema which define the service configuration can be found on the Downloads page

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

Initialization REST Methods

Initialize Services

Purpose: Initializes the DuraService application
Request: POST https://host:port/duraservice/init

Request Body: XML similar to:

<servicesConfig>
 <primaryServiceInstance>
 <host>[PRIMARY-SERVICE-INSTANCE-HOST]</host>

<servicesAdminPort>[PRIMARY-SERVICES-ADMIN-PORT]</servicesAdminPort>

<servicesAdminContext>[PRIMARY-SERVICES-ADMIN-CONTEXT]</servicesAdmin
Context>
 </primaryServiceInstance>
 <userStorage>
 <host>[USER-STORAGE-HOST-NAME]</host>
 <port>[USER-STORAGE-PORT]</port>
 <context>[USER-STORAGE-CONTEXT]</context>
 <msgBrokerUrl>[USER-STORAGE-MSG-BROKER-URL]</msgBrokerUrl>
 </userStorage>
 <serviceStorage>
 <host>[SERVICES-STORAGE-HOST-NAME]</host>
 <port>[SERVICES-STORAGE-PORT]</port>
 <context>[SERVICES-STORAGE-CONTEXT]</context>
 <spaceId>[SERVICES-STORAGE-SPACE-ID]</spaceId>
 </serviceStorage>
 <serviceCompute>
 <type>AMAZON_EC2</type>
 <imageId>[MACHINE-IMAGE-ID]</imageId>
 <computeProviderCredential>
 <username>[USERNAME]</username>
 <password>[PASSWORD]</password>
 </computeProviderCredential>
 </serviceCompute>
 </servicesConfig>

Response Code: 200 (on success)
Response Body: "Initialization Successful" (on success)

Is Initialized

Purpose: Performs a check to determine if the DuraService application has been initialized
Request: GET https://host:port/duraservice/init

Response Code: 200 (if the application has been initialized), 503 (if the application has NOT been
initialized)
Response Body: Text indicating whether initialization has occurred.

Service REST Methods

Get Services

1.

2.

Purpose: Retrieves a listing of services, along with their configuration options
Request: GET ? (show)https://host:port/duraservice/services

Parameter options for show (optional)
available (default) - Includes only services which have not been deployed but are
available for deployment
deployed - Includes only services which have been deployed and started

Response Code: 200 (on success)
Response Body: XML list of services (see service config xsd)

Get Service

Purpose: Retrieves information about a particular service including description, configuration
options, and all deployments
Request: GET https://host:port/duraservice/serviceID

Response Code: 200 (on success)
Response Body: XML service (see service config xsd)

Get Deployed Service

Purpose: Retrieves information about a deployed service including description, configuration
options, and a single deployment indicating the configuration options in use
Request: GET https://host:port/duraservice/serviceID/deploymentID

Response Code: 200 (on success)
Response Body: XML service (see service config xsd)

Get Deployed Service Properties

Purpose: Retrieves the runtime properties of a deployed service
Request: GET https://host:port/duraservice/serviceID/deploymentID/properti

es
Response Code: 200 (on success)
Response Body: XML service (simple xml Map serialization)

Deploy Service

Purpose: Deploys and starts an available service
Request: PUT ? (serviceHost)https://host:port/duraservice/serviceID

Parameter value for serviceHost (optional) should indicate the services host on which the
service should be deployed. Default is the primary customer host.

Request Body: XML user configuration indicating the config selections for the service (see user
config portion of service config xsd)
Response Code: 201 (on success)
Response Header: Location header indicates the URL at which information about the deployed
service can be retrieved (the URL for a get deployed service call) which includes the
deploymentID

Update Service Configuration

Purpose: Updates the configuration of a deployed service
Request: POST https://host:port/duraservice/serviceID/deploymentID

Request Body: Updated XML user configuration indicating the config selections for the service
(see user config portion of service config xsd)
Response Code: 200 (on success)

UnDeploy Service

Purpose: Stops and Undeploys a deployed service
Request: DELETE https://host:port/duraservice/serviceID/deploymentID

Response Code: 200 (on success)

DurAdmin

Purpose: DurAdmin is the user-facing application through which DuraCloud exposes DuraStore and DuraService
functionality. The DurAdmin REST API provides the means by which DurAdmin is initialized.

Initialization REST Methods

Initialize Application

Purpose: Allows the initialization of duradmin
Request: POST https://host:port/duradmin/init

Request Body: XML similar to:

<duradminConfig>
 <durastoreHost>[host]</durastoreHost>
 <durastorePort>[port]</durastorePort>
 <durastoreContext>durastore</durastoreContext>
 <duraserviceHost>[host]</duraserviceHost>
 <duraservicePort>[port]</duraservicePort>
 <duraserviceContext>duraservice</duraserviceContext>
</duradminConfig>

Response Code: 200 (on success)
Response Body: "Initialization Successful" (on success)

Is Initialized

Purpose: Performs a check to determine if the DurAdmin application has been initialized
Request: GET https://host:port/duradmin/init

Response Code: 200 (if the application has been initialized), 503 (if the application has NOT been
initialized)
Response Body: Text indicating whether initialization has occurred.

DuraBoss

Purpose: DuraBoss provides administrative control over a variety of activities that run over the storage and services
managed by DuraCloud. DuraBoss consists of four major applications:

Reporter - generates reports relating to the status of the storage and services within DuraCloud
Executor - manages actions which automate functions within DuraCloud, primarily the scheduling and running
of DuraCloud services
Auditor - maintains audit logs for all spaces within DuraCloud, ensuring that all additions, update, and
deletions are recorded and made available
Manifest - provides manifests in various formats for the content that resides in DuraCloud spaces

Resources: XML schema which defines the expected transfer data for storage and service reporting can be found
on the Downloads page

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

Initialization REST Methods

Initialize Application

Purpose: Allows the initialization of duraboss
Request: POST https://host:port/duraboss/init

Request Body: XML similar to:

<durabossConfig>
 <reporterEnabled>[true|false]</reporterEnabled>
 <executorEnabled>[true|false]</executorEnabled>
 <auditorEnabled>[true|false]</auditorEnabled>
 <durastoreHost>[host]</durastoreHost>
 <durastorePort>[port]</durastorePort>
 <durastoreContext>durastore</durastoreContext>
 <duraserviceHost>[host]</duraserviceHost>
 <duraservicePort>[port]</duraservicePort>
 <duraserviceContext>duraservice</duraserviceContext>
 <notificationConfig>
 <type>EMAIL</type>
 <username>[username for notification system]</username>
 <password>[password for notification system]</password>
 <originator>[from email address]</originator>
 <admin>[administrator email address]</admin>
 </notificationConfig>
</durabossConfig>

Response Code: 200 (on success)
Response Body: "Initialization Successful" (on success)

Is Initialized

Purpose: Performs a check to determine if the DuraBoss application has been initialized
Request: GET https://host:port/duraboss/init

Response Code: 200 (if the application has been initialized), 503 (if the application has NOT been
initialized)
Response Body: Text indicating whether initialization has occurred.

Reporter: Storage Report REST Methods

Get Latest Storage Report

Purpose: Provides the most current storage report in XML format
Request: GET https://host:port/duraboss/report/storage

Response Code: 200 (on success)
Response Body: XML, defined by the storage report XSD

Get Storage Report List

Purpose: Provides a list of all storage report IDs
Request: GET https://host:port/duraboss/report/storage/list

Response Code: 200 (on success)
Response Body: XML, defined by the storage report XSD

Get Storage Report

Purpose: Provides a specific storage report based on the provided report ID
Request: GET https://host:port/duraboss/report/storage/reportID

Response Code: 200 (on success)
Response Body: XML, defined by the storage report XSD

Get Storage Report Info

Purpose: Provides a information about the current status of the storage reporting system
Request: GET https://host:port/duraboss/report/storage/info

Response Code: 200 (on success)
Response Body: XML, defined by the storage report XSD

Start Storage Report

Purpose: Starts a storage report if one is not already running
Request: POST https://host:port/duraboss/report/storage

Response Code: 200 (on success)
Response Body: "Report Started" (on success), or ""Report Already In Progress" (if a report is
already in progress)

Cancel Storage Report

Purpose: Cancels a running storage report
Request: DELETE https://host:port/duraboss/report/storage

Response Code: 200 (on success)
Response Body: "Storage report cancelled"

Schedule Storage Report

Purpose: Schedules a time for a storage report to be run
Request: POST ?https://host:port/duraboss/report/storage/schedule

 (startTime) (frequency)

startTime: time (in milliseconds since the epoch) to begin the next storage report
frequency: time (in milliseconds) to wait between running reports (minimum value is
600000)

Response Code: 200 (on success)
Response Body: "Storage reports scheduled" (on success)

Cancel Storage Report Schedule

Purpose: Cancels all entries on the storage report schedule
Request: DELETE https://host:port/duraboss/report/storage/schedule

Response Code: 200 (on success)
Response Body: "Storage Reports schedule cancelled"

Reporter: Service Report REST Methods

Get Deployed Services Report

Purpose: Provides a listing of the services which are currently deployed
Request: GET https://host:port/duraboss/report/service/deployed

Response Code: 200 (on success)
Response Body: XML, defined by the service report XSDs

Get Completed Services Report

Purpose: Provides a listing of the most recent completed services
Request: GET ? (limit) https://host:port/duraboss/report/service

Parameter value for limit (optional) should indicate the maximum number of services to
return in the report (default is 20, max is 1000)

Response Code: 200 (on success)
Response Body: XML, defined by the service report XSDs

Get Completed Services Report List

Purpose: Provides a listing of all service report IDs
Request: GET https://host:port/duraboss/report/service/list

Response Code: 200 (on success)
Response Body: XML, defined by the service report XSDs

Get Services Report

Purpose: Provides a specific services report based on the provided report ID
Request: GET https://host:port/duraboss/report/service/reportID

Response Code: 200 (on success)
Response Body: XML, defined by the service report XSDs

Executor REST Methods

Get Executor Status

Purpose: Provides a status of the Executor, which is the collected status of all Action Handlers
Request: GET https://host:port/duraboss/exec

Response Code: 200 (on success)
Response Body: XML serialization of status map

Get Supported Executor Actions

Purpose: Provides a listing of the actions which the Executor can perform
Request: GET https://host:port/duraboss/exec/action

Response Code: 200 (on success)
Response Body: XML serialization of the action set

Executor Actions

Action Name Description Request Body

start-bit-integrity Instructs the bit integrity handler
to begin the process at a given
time and at a given frequency

start-time,frequency (where
start-time is epoch date in
milliseconds and frequency is
number of milliseconds)

cancel-bit-integrity Instructs the bit integrity handler
to stop performing bit integrity
checks and gracefully shut
down

None

start-streaming Starts the streaming service, so
that media streaming can begin

None

stop-streaming Shuts down the streaming
service, stops streaming of all
media

None

start-streaming-space Begin streaming all content in
the given space

Name of the space to stream

stop-streaming-space Stop streaming content in the
given space

Name of the space to end
streaming

Perform an Executor Action

Purpose: Performs a specific Executor action based on the provided actionName
Request: POST https://host:port/duraboss/exec/actionName

Response Code: 200 (on success)

Shutdown Executor

Purpose: Requests that the Executor perform a graceful shutdown
Request: DELETE https://host:port/duraboss/exec

Response Code: 200 (on success)

1.
2.

1.

Auditor REST Methods

Create Initial Audit Log

Purpose: Requests the creation of initial audit logs, and removal of any existing audit logs
Request: POST https://host:port/duraboss/audit

Response Code: 202 (on acceptance)

Get Audit Logs

Purpose: Provides a listing of the audit logs for the provided spaceId
Request: GET https://host:port/duraboss/audit/spaceId

Response Code: 200 (on success)
Response Body: Plain text listing of audit log contentIds

Shutdown Auditor

Purpose: Requests that the Auditor perform a graceful shutdown
Request: DELETE https://host:port/duraboss/audit

Response Code: 200 (on success)
Response Body: Plain text of "auditor shutting down"

Content Manifest REST Methods

Get Content Manifest

Purpose: Requests the content manifest for the provided spaceId, in the requested format, as of
the provided date, and for the provided storeID
Request: GET ? (format) (date) https://host:port/duraboss/manifest/spaceId

 (storeID)

Parameter options for format (optional)
tsv (default) - Produces content manifest in tab-separated-value format
bagit - Produces content manifest in formatBagIt

Parameter options for date (optional, current datetime is default)
Any formatted date of the form: 'yyyy-MM-dd'T'HH:mm:ss.sss' or 'yyyy-MM' or any
form in between these two

Parameter options for storeID (optional, default is primary store)
Response Code: 200 (on success)
Response Body: Plain text content manifest in the requested format

REST API Examples Using curl
Convenience Variables
DuraStore Notes
DuraStore

Get Stores
Get Spaces
Create Space
Store Content
Get Space
Set Space Properties
Get Space Properties
Get Content
Set Content Properties
Get Content Properties
Delete Content

https://confluence.ucop.edu/display/Curation/BagIt

Delete Space

DuraService Notes
DuraService

Get Services
Deploy Service
Get Service
Get Deployed Service
Get Deployed Service Properties
Update Service Configuration
UnDeploy Service

DuraBoss Report API
Get Latest Storage Report
Get Storage Report List
Get Storage Report Info
Start Storage Report
Stop Storage Report
Schedule Storage Report (to begin Jan 1, 2020 at 01:01:01 and repeat every 10 min)
Cancel Storage Report Schedule
Get Deployed Services Report
Get Completed Services Report
Get Services Report List

DuraBoss Auditor API
Start the Auditor
Retrieve Log for a Space
Stop the Auditor

DuraBoss Executor API
Init Status
Get Executor Status
Get Executor's Supported Actions
Start/Stop Streaming Service
Start/Stop Streaming on a Particular Space
Start Bit Service Integrity
Cancel Bit Integrity Service

DuraBoss Manifest API
Get Default Manifest
Get Default Manifest with Specific Format (BagIt)
Get Default Manifest with Specific store-id
Get Default Manifest with Specific As-Of-Date

Convenience Variables

The curl commands below can be used directly if you define the following variables in your shell

host=<duracloud-hostname>
space-0=<any-name>
space-1=<any-name>
user=<username>
pword=<password>
file=<any-file-name>

DuraStore Notes

The curl commands in the DuraStore section expect a test file for uploads.

echo hello > ${file}

Note that if the target of a content or space retrieval (GET) has access permissions set to "OPEN", then the "-u"
option in the curl commands is not required.

DuraStore

Get Stores

curl -u ${user}:${pword} https://${host}/durastore/stores

Get Spaces

curl -u ${user}:${pword} https://${host}/durastore/spaces
curl -u ${user}:${pword} https://${host}/durastore/spaces?storeID=1

Create Space

curl -u ${user}:${pword} -X PUT https://${host}/durastore/${space-0}
curl -u ${user}:${pword} -H "x-dura-meta-city: arlington" -H
"x-dura-meta-state: va" -X PUT
https://${host}/durastore/${space-1}?storeID=1

Store Content

curl -u ${user}:${pword} -T ${file}
https://${host}/durastore/${space-0}/test.txt
curl -u ${user}:${pword} -T ${file}
https://${host}/durastore/${space-0}/item.txt

Get Space

curl -u ${user}:${pword} https://${host}/durastore/${space-0}
curl -u ${user}:${pword} https://${host}/durastore/${space-1}?storeID=1
curl -u ${user}:${pword} https://${host}/durastore/${space-0}?prefix=test

Set Space Properties

curl -u ${user}:${pword} -H "x-dura-meta-country: usa" -X POST
https://${host}/durastore/${space-0}

Get Space Properties

curl -u ${user}:${pword} -I https://${host}/durastore/${space-0}
curl -u ${user}:${pword} -I https://${host}/durastore/${space-1}?storeID=1

Get Content

curl -u ${user}:${pword} https://${host}/durastore/${space-0}/test.txt
curl -u ${user}:${pword}
https://${host}/durastore/${space-0}/test.txt?storeID=0\&attachment=true

Set Content Properties

curl -u ${user}:${pword} -X POST -H "x-dura-meta-color: green"
https://${host}/durastore/${space-0}/test.txt

Get Content Properties

curl -u ${user}:${pword} -I https://${host}/durastore/${space-0}/test.txt

Delete Content

1.
2.

curl -u ${user}:${pword} -X DELETE
https://${host}/durastore/${space-0}/test.txt

Delete Space

curl -u ${user}:${pword} -X DELETE https://${host}/durastore/${space-0}
curl -u ${user}:${pword} -X DELETE
https://${host}/durastore/${space-1}?storeID=1

DuraService Notes

The commands in the DuraService section below demonstrate the deployment, inspection, reconfiguration, and
undeployment of a service.
As of release 0.8.0, the Bit Integrity Checker has service id of '0' (noted in variable below).
The actual deployment id is dynamically generated based on the number of previous deployments within a given
DuraCloud application.
After deploying the service, use the "Get Deployed Service" call to determine the specific of yourdeployment id
deployed service.

bitintegrity=0
deployment=<determined-by-inspection>

The following two service configuration files are provided for deployment and reconfiguration of the Bit Integrity
Checker.
They are based on the spaces that were created in the DuraStore section, but can be modified to indicate other
configuration options or to execute over alternate spaces.

configuration file 0
configuration file 1

DuraService

Get Services

curl -u ${user}:${pword} https://${host}/duraservice/services
curl -u ${user}:${pword} https://${host}/duraservice/services?show=deployed

Deploy Service

curl -u ${user}:${pword} -X PUT -T deploy.xml
https://${host}/duraservice/${bitintegrity}

https://wiki.duraspace.org/download/attachments/34665853/deploy.xml?version=1&modificationDate=1296137372362
https://wiki.duraspace.org/download/attachments/34665853/deploy-new.xml?version=1&modificationDate=1296137372367

Get Service

curl -u ${user}:${pword} https://${host}/duraservice/${bitintegrity}

Get Deployed Service

curl -u ${user}:${pword}
https://${host}/duraservice/${bitintegrity}/${deployment}

Get Deployed Service Properties

curl -u ${user}:${pword}
https://${host}/duraservice/${bitintegrity}/${deployment}/properties

Update Service Configuration

curl -u ${user}:${pword} -X PUT -T deploy-new.xml
https://${host}/duraservice/${bitintegrity}

UnDeploy Service

curl -u ${user}:${pword} -X DELETE
https://${host}/duraservice/${bitintegrity}/${deployment}

DuraBoss Report API

Get Latest Storage Report

curl -u ${user}:${pword} https://${host}/duraboss/report/storage

Get Storage Report List

curl -u ${user}:${pword} https://${host}/duraboss/report/storage/list

Get Storage Report Info

curl -u ${user}:${pword} https://${host}/duraboss/report/storage/info

Start Storage Report

curl -u ${user}:${pword} -X POST https://${host}/duraboss/report/storage

Stop Storage Report

curl -u ${user}:${pword} -X DELETE https://${host}/duraboss/report/storage

Schedule Storage Report (to begin Jan 1, 2020 at 01:01:01 and repeat every 10 min)

curl -u ${user}:${pword} -X POST
https://${host}/duraboss/report/storage/schedule?startTime=1577840461000\&f
requency=600000

Cancel Storage Report Schedule

curl -u ${user}:${pword} -X DELETE
https://${host}/duraboss/report/storage/schedule

Get Deployed Services Report

curl -u ${user}:${pword} https://${host}/duraboss/report/service/deployed

Get Completed Services Report

curl -u ${user}:${pword} https://${host}/duraboss/report/service

Get Services Report List

curl -u ${user}:${pword} https://${host}/duraboss/report/service/list

DuraBoss Auditor API

Start the Auditor

curl -u ${user}:${pword} -X POST https://${host}/duraboss/audit

Retrieve Log for a Space

curl -u ${user}:${pword} https://${host}/duraboss/audit/${space}

Stop the Auditor

curl -u ${user}:${pword} -X DELETE https://${host}/duraboss/audit

DuraBoss Executor API

Init Status

curl -u ${user}:${pword} https://${host}/duraboss/init

Get Executor Status

curl -u ${user}:${pword} https://${host}/duraboss/exec

Get Executor's Supported Actions

curl -u ${user}:${pword} https://${host}/duraboss/exec/action

Start/Stop Streaming Service

curl -u ${user}:${pword} -X POST
https://${host}/duraboss/exec/start-streaming
curl -u ${user}:${pword} -X POST
https://${host}/duraboss/exec/stop-streaming

Start/Stop Streaming on a Particular Space

curl -u ${user}:${pword} -X POST
https://${host}/duraboss/exec/start-streaming-space -d "${space}"
curl -u ${user}:${pword} -X POST
https://${host}/duraboss/exec/stop-streaming-space -d "${space}"

Start Bit Service Integrity

curl -u ${user}:${pword} -X POST
https://${host}/duraboss/exec/start-bit-integrity -d
"${firstRunInEpochMilliseconds},${periodInMilliseconds}"

Cancel Bit Integrity Service

curl -u ${user}:${pword} -X POST
https://${host}/duraboss/exec/cancel-bit-integrity

DuraBoss Manifest API

Get Default Manifest

curl -u ${user}:${pword} https://${host}/duraboss/manifest/space-id

Get Default Manifest with Specific Format (BagIt)

curl -u ${user}:${pword}
https://${host}/duraboss/manifest/space-id?format=bagit

Get Default Manifest with Specific store-id

curl -u ${user}:${pword}
https://${host}/duraboss/manifest/space-id?storeID=${storeId}

Get Default Manifest with Specific As-Of-Date

curl -u ${user}:${pword}
https://${host}/duraboss/manifest/space-id?date=${data}

Release Notes

Release 2.3.1

Released: March 28, 2013

Release 2.3.1 is a bug fix release which focused on resolving bugs which resulted in errors when uploading files via
the Sync Tool.

For more details about specific changes in release 2.3.1, see the .JIRA issue tracker

Release 2.3.0

Released: March 1, 2013

The primary features of release 2.3.0 are:

A new graphical Sync Tool
The Sync Tool can now be run using either a command line or a graphical user interface

The new graphical interface provides a setup wizard and an administration console with a
monitoring display.
The familiar command line interface continues to provide access to all sync features, some of
which are not yet available via the graphical interface.
Regardless of which interface is used, the underlying sync functionality remains the same.

The Sync Tool now captures and preserves the time stamps of files being transferred to DuraCloud,
and the Retrieval Tool now re-instates those time stamps when files are retrieved.
The Sync Tool's command line interface now supports an exclude list, which can be used to specify
files and directories that should not be pushed to DuraCloud.

Amazon Glacier integration
Amazon Glacier is now available as a secondary storage provider in DuraCloud

For more details about specific changes in release 2.3.0, see the .JIRA issue tracker

Important Known Issues:

Java Browser Security Vulnerabilities
The DuraCloud Upload Tool, which is deployed as a Java browser applet to assist with file uploads
through the DuraCloud web UI, requires the Java browser plugin be installed.
Due to in Java browser plugins, it is recommended that users known security vulnerabilities upgrade

 to the latest available.their local version of Java
If you prefer to not use a Java browser plugin, or if the plugin is not functioning properly, we
recommend using the newly updated Sync Tool, which is available from the "Get Sync Tool" button in
the DuraCloud web UI, or from the .DuraCloud downloads page

A detailed list of known issues in release 2.3.0 may be found found .here

Release 2.2.0

Released: November 14, 2012

The primary features of release 2.2.0 are:

Java 7 support
The DuraCloud code base now requires Java 7 to build and run. This update is necessary both

https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=11015
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=11005
http://www.oracle.com/technetwork/topics/security/alert-cve-2013-0422-1896849.html
http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/index.jsp
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

because , and to provide access to new features in Java 7.Java 6 is reaching end of life
All client-side Java tools now require Java 7 to run, this includes the Sync Tool, the Retrieval Tool, and
the Upload Tool. Previous versions of these tools will continue to work with Java 6.
The file upload capability built into the DuraCloud UI (the Upload Tool in applet form) will now require
Java browser plugins be updated to Java 7. Simply for your platform should install theinstalling Java 7
appropriate browser plugins.

A long list of UI tweaks and improvements including better graph and report display and labeling, improved
multi-select support, and a variety of other small updates.

For more details about specific changes in release 2.2.0, see the JIRA issue tracker

Release 2.1.1

Released: September 28, 2012

The primary features of release 2.1.1 are:

Duplicate on Change service updates
Duplication settings for newly created spaces can now be specified using a default setting. Any new
spaces created will be configured using the default duplication settings.

Space counting
The space counting feature in the UI now captures the final count on a space, and will only re-run the
count when asked.

For more details about specific changes in release 2.1.1, see the .JIRA issue tracker

Release 2.1.0

Released: August 9, 2012

The primary features of release 2.1.0 are:

Duplicate on Change service updates
Duplication is now configured at the space level, allowing for much finer grained selection of which
content will be automatically copied to a secondary provider, and which provider that will be.

SDSC Storage Provider
The SDSC storage provider connection was tested and improved, in close cooperation with SDSC
personnel, to ensure its readiness for production status.

Security
The DuraCloud security configuration has been extended to only allow Administrative users to perform
service execution.

For more details about specific changes in release 2.1.0, see the .JIRA issue tracker

Release 2.0.0

Released: April 17, 2012

The primary features of release 2.0.0 are:

Integrated History Reports
Reports illustrating both current and historical views of the content stored in DuraCloud have now been
integrated directly into the display for each individual space.

Automated Service Execution
Bit Integrity Checks

http://www.oracle.com/technetwork/java/eol-135779.html
http://www.java.com/en/download/index.jsp
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10602
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10611
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10433

Bit Integrity checking is now an automated function. Each content item in each space in each
storage provider will be checked regularly to verify that it has not changed since it arrived in
DuraCloud. No user intervention is required for this to occur. As each space is checked, the
display will update to indicate that the bit integrity of the contained content has been verified.

Media Serving
Streaming content from DuraCloud now requires only a single button click. Each space now
provides the option to turn on or off streaming, with no need to configure, deploy, or re-deploy a
service.

Audit Logging
Logging is now being generated and captured which tracks the events occurring within DuraCloud.
This provides a permanent record of when content is added, updated, or removed.

Manifest Generation
Building on the work of the audit log, a content manifest can now be requested for any space within
DuraCloud. This manifest, which can be in multiple formats, describes the content that resides in the
space the moment that the manifest is requested.

For more details about specific changes in release 2.0.0, see the .JIRA issue tracker

Release 1.3.1

Released: Jan 20, 2012

The primary features of release 1.3.1 are:

Improved service reporting
The information within service reports can now be viewed in tabular form directly from within the
service details area.
Items which are considered error cases that occur as part of service execution are now included in an
independent error report that is available for viewing upon service completion.

Simplified public access
Setting the contents of a space to be publicly viewable is now accomplished by simply granting read
access to the "public" group.

CloudSync service
The latest version of , a utility for managing the movement of content between DuraCloudCloudSync
and a Fedora repository, can now be run as a service within DuraCloud

For more details about specific changes in release 1.3.1, see the .JIRA issue tracker

Release 1.3

Released: Dec 14, 2011

The primary features of release 1.3 are:

Improved access control
Administrators can now define access control lists for each space, indicating which users and groups
have read or write access to the content within that space.
Users now see only the spaces in their spaces listing which they have access to view. This includes all
Open spaces, which remain available for public read access.
Users now only see options to perform add, edit, or delete actions in spaces where they have write
permissions.

Content copy across providers
Files stored in DuraCloud can now be easily copied individually to another storage provider via both
the REST API and the web interface.

https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10401
https://wiki.duraspace.org/display/CLOUDSYNC/Fedora+CloudSync+Project
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10408

Email notification on service completion
After a service in DuraCloud completes, an email is now sent to the user who launched the service,
notifying them that the service has completed, and providing details about the results of the service.

For more details about specific changes in release 1.3, see the .JIRA issue tracker

Release 1.2

Released: Oct 30, 2011

The primary features of release 1.2 are:

Upload Tool
Provides a graphical method for transferring large numbers of files to DuraCloud.
Allows for the selection of both files and folders for transfer, and presents a visual indication of the
transfer progress.
Can be run from the DuraCloud UI by choosing the "Add Many Items" button when a space is
selected.
Can also be download and run locally.

SDSC Storage Provider
An initial beta release of the new storage provider integration for connecting to the SDSC Cloud
storage system.

For more details about specific changes in release 1.2, see the .JIRA issue tracker

Release 1.1

Released: Sept 30, 2011

The primary features of release 1.1 are:

Media Streamer service
Service now allows content from multiple spaces to be streamed.
Service now recognizes when new content is added to spaces which are being streamed and starts
streaming on those files.

Duplicate on Change service
Service updated to provide greater assurance of file transfer and produce an output report which
details the actions of the service and the results of those actions.

Content item copy and rename capability
New copy operation is able to copy, move, and rename content items within a space and between
spaces.

Stitch Tool
New utility for large files which were "chunked" (split into multiple small files) when placed into storage.
This new utility will recombine all of the pieces of a file to re-produce the original file in local storage.
Stitch capabilities incorporated into the Retrieval Tool, allowing any content which has been "chunked"
to be reconstituted on retrieval.

UI updates
Improvements to the user interface in order to provide simpler and more useful feedback for actions
being performed throughout the application.

Properties
Use of the term 'properties' has replaced 'metadata' to describe the name/value pairs which can be
associated with spaces and content. This update helps to clarify the purpose and capability of this
attached information.

Local service repositories

https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10320
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10309

Service repositories can now reside within the same storage container as is used by DuraStore,
allowing for simpler configuration of stand-alone DuraCloud instances.

Initialization endpoint
New REST API endpoint (/init) for application initialization.

Tools tab
New tools tab on the dashboard provides convenient links for downloading DuraCloud client tools.

For more details about specific changes in release 1.1, see the .JIRA issue tracker

Release 1.0

Released: July 29, 2011

The primary features of release 1.0 are:

Storage Reporting
A new feature which provides detailed information about the amount of data you have stored in
DuraCloud, as well as the kinds of data you have stored in DuraCloud. Reports are generated
automatically and the information can be viewed using the DuraCloud dashboard or downloaded for
processing using new REST API methods.

Service Reporting
A new feature which provides detailed information about services which are currently running and
which have run previously in your DuraCloud account. Reports are generated automatically as
services are run and the information can be viewed using the DuraCloud dashboard or downloaded for
processing using new REST API methods.

Service Dependencies
Any service can now define a dependency on another service.
"System" services, which need to be installed prior to other services being deployed, are now installed
on-the-fly only when needed.

Improved service feedback
The information provided by running services is now more complete and more consistent with other
DuraCloud services.

Improved character set support
Content IDs can now consist of any characters which can be properly encoded using UTF-8 (with the
exception of "reserved" characters mentioned)here

Image Viewer URL stability
The URLs for images made available by the Image Server service will now stay consistent across
restarts of the service and restarts of the DuraCloud instance.

For more details about specific changes in release 1.0, see the .JIRA issue tracker

Release 0.9

Released: April 27, 2011

The primary features of release 0.9 are:

The Duplicate on Ingest service is now the Duplicate on Change service.
This service now supports all of the same on-ingest features as before, but it now also performs
duplication of all update and delete actions as well. This allows the primary and secondary cloud
stores to be kept completely in sync.

The Bulk Bit Integrity Service has been improved.
This service has been updated and verified to properly handle spaces with up to 1 million items
The second step of the MD5 verification, which used to run locally on the instance, has been moved to

https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10296
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10262

hadoop, allowing the service to complete much more quickly for large data sets.
User management functions have been removed, as they are now performed by the DuraCloud Management

.Console
As a convenience, administrators are still able to see the list of users and their roles within the
DuraCloud Administrator UI.

Service outputs have been made more consistent.
All DuraCloud services which produce an output file now store that file in the x-service-out space.
Services which produce log files store those logs in the x-service-work space.
The names of the output files have been made more consistent, making it simpler to determine which
files correspond to which service deployment.

Password security has been improved.
All passwords used within DuraCloud are now immediately pushed through a hashing function before
being are stored, so that no user passwords are transferred or stored as clear text.

A ServiceClient is now available, to compliment the StoreClient and make it easier to make direct API calls to
manipulate DuraCloud services.

For more details about specific changes in release 0.9, see the .JIRA issue tracker

Release 0.8

Released: Jan 26, 2011

The primary features of release 0.8 are:

Simplified services
The listing of services has been better organized, to make finding the service you would like to run
simpler.
All services now require you to set fewer options, simplifying the deployment process.
Bulk services (Image Transformer - Bulk, Bit Integrity Checker - Bulk, and Duplicate on Demand) now
provide a configuration mode which handles the setting of server type, and number of serversstandard
used to perform the job, so that you no longer have to make those choices.
The output location for services has been set to the space, which removes the need tox-service-out
set this value for each service, and provides a standard location to look for service output reports.
The work location for services has been set to the space, which removes the need tox-service-work
set this value for each service, and provides a standard location to look for service logs and other run
time artifacts.

More reliable services
Several bugs which have caused services to fail have been resolved.

Sync Tool command line flags now match those offered by the Retrieval Tool.
UI updates which provide better visual cues for which storage provider is in use.
A host of bug fixes and small tweaks

For more details about specific changes in release 0.8, see the .JIRA issue tracker

Release 0.7

Released: Oct 28, 2010

The primary features of release 0.7 are:

A new , a companion to the existing , which is a command-line tool for the retrievingRetrieval Tool Sync Tool
content from DuraCloud spaces.
A new service, which can be run over content stored in Amazon to create a listingBulk Bit Integrity Checker
of checksums calculated for each file. This new service pairs well with the serviceBit Integrity Checker

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Management+Console
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Management+Console
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10198
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10175
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+Services#DuraCloudServices-BulkBitIntegrityChecker
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+Services#DuraCloudServices-BitIntegrityChecker

(previously known as the Fixity Service), allowing the heavy processing to be handled in parallel using
Hadoop on an Amazon EC2 cluster, and the simpler checks and comparisons to be handled by the
DuraCloud instance.
A new service, which can be used to copy files from the primary Amazon store intoDuplicate on Demand
another storage provider. This service pairs well with the service (previously known asDuplicate on Upload
the Replication Service) by performing the large up-front copy using Hadoop on an Amazon EC2 cluster, then
allowing Duplicate on Upload to watch for and add new files as they are uploaded.
Integration of a new storage provider: .Microsoft Windows Azure

For more details about specific changes in release 0.7, see the .JIRA issue tracker

Note that there have been during testing of the Bulk Image Transformer (included in release 0.6issues discovered
as the Bulk Image Conversion Service). If you choose to run this service, it is recommended that the size of images
being used be kept under 100MB. The likelihood of success appears to increase with server size, and number of
servers being set to 3 or more is recommended. If you do run this service, please note the data set and
configuration and make us aware of the outcome.

Release 0.6

Released: Sept 03, 2010

The primary features of release 0.6 are:

Addition of a new Fixity Service, which allows for bit integrity checking on content stored within DuraCloud.
This service has many options to fit various usage needs. For more information, .see the Fixity Service page
Addition of a new Bulk Image Conversion Service, which, like the Image Conversion Service, allows for
converting images into other formats. This new service, however, makes use of Hadoop in the background to
run the conversion using multiple servers, allowing for much higher overall throughput.
An updated handling of space metadata so that spaces with a large number of content items will not cause
slow response times. Now spaces with more than 1000 items will initially show a value of 1000+ as the
number of items in the space. DurAdmin, the administrative interface, will then calculate the total number of
items on the fly.
The Sync Tool has a new option (-e) which will cause the tool to exit once it has completed syncing rather
than continually monitoring for changes. This makes it easier for administrators to include the Sync Tool in
scripts which run daily or weekly to ensure all local content is moved to DuraCloud.
DurAdmin now provides a way to delete groups of content items and spaces in one step.
A host of bug fixes and small tweaks

For more details about specific changes in release 0.6, see the .JIRA issue tracker

Release 0.5

Released: July 28, 2010

The primary feature of release 0.5 is the addition of a completely new administrative user interface. This UI, called
DurAdmin like its predecessor, provides for easy access to the primary features of DuraCloud.

For more details about specific changes in release 0.5, see the .JIRA issue tracker

Release 0.4

Released 0.4.1: June 30, 2010

This build release is the first publicly available

https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+Services#DuraCloudServices-DuplicateonDemand
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+Services#DuraCloudServices-DuplicateonUpload
http://www.microsoft.com/windowsazure/storage/default.aspx
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10169
https://jira.duraspace.org/browse/DURACLOUD-279
https://wiki.duraspace.org/pages/createpage.action?spaceKey=DURACLOUD23&title=Bit+Integrity+Checker&linkCreation=true&fromPageId=34665876
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10170
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10171

It primarily provides clean-up of projects and tests

Released 0.4: June 21, 2010

The primary features added in release 0.4 of DuraCloud were:

Media Streaming Service
Provides a way to enable streaming for video and audio files as well as providing an example media
player.

Logging moved to SLF4J over Logback
Provides greater consistency in log output and greater flexibility in log configuration

For more details about specific changes in release 0.4, see the .JIRA issue tracker

Release 0.3

Released: May 17, 2010

The primary features in the third pilot release of DuraCloud are:

Security
All DuraCloud applications now require authentication prior to performing write activities
Read activities on 'closed' spaces also require authentication, but 'open' spaces allow anonymous read
access

Sync Tool
Provides a command line utility for keeping DuraCloud content synchronized with the local file system

Other improvements in the 0.3 release:

Image Conversion Service
Adds an option to convert images to the (web standard) sRGB color space
Adds the capability to perform multiple conversions at once (providing the compute capacity is
available) and provides more frequent activity feedback through the continual writing of the conversion
output file

DuraStore
Adds an option for users to provide MD5 checksum when adding content. This disables the in-transfer
MD5 computation (providing improved performance) and compares the final MD5 computed by the
storage provider with the user provided MD5.

For more details about specific changes in release 0.3, see the .JIRA issue tracker

Release 0.2

Released: Feb 19, 2010

The second pilot release of DuraCloud focused on providing access to services which can be run over content, as
well as improvements to the storage foundation provided by the first release.

Services available as of release 0.2:

J2K service - serves J2K images, provides a J2K image viewer
Image Conversion service - converts image files from one format to another
Replication service - replicates content stored in one provider to another upon content upload
Web Application Utility service - infrastructure service required by J2K service (allows for deployment of web
applications)

https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10172
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10173

ImageMagick service - infrastructure service required by Image Conversion service (provides access to
ImageMagick utilities)

Service functions available as of release 0.2:

Services may be deployed with configuration
Available and deployed services may be listed
Deployed service configuration may be viewed and updated
Deployed service properties may be viewed
Deployed services may be undeployed and redeployed

New storage functions available as of release 0.2:

Space content may be listed in chunks with an optional prefix filter
Space and content metadata may be edited via the UI
Space and content metadata tags may be added/removed via the UI

For more details about specific changes in release 0.2, see the . Note that while most itemsJIRA issue tracker
included in the release are listed in the tracker, we migrated to using JIRA while working on release 0.2, so issues
completed prior to the migration are not included.

Release 0.1

Released: Nov 2, 2009

The first pilot release of DuraCloud laid the foundation for storage across underlying providers.

Through either the web-ui or via direct REST calls

underlying providers may be listed
spaces may be created/deleted
content may be uploaded/downloaded/deleted
metadata may be viewed
metadata may be modified

modification is fully supported through the REST API
modification is partially supported through the web-ui

DuraCloud Sync Tool

Introduction

The Sync Tool is a utility which was created in order to provide a simple way to move files from a local file system to
DuraCloud.

Download

Download the Sync Tool from the Downloads page. Note that this is the same file as is available via the "Get Sync
Tool" button on the DuraCloud UI.

https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10174
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

The Sync Tool requires that Java version 7 or above be installed on your system in order to run.
Java .can be downloaded from here

If you are using a Mac and have questions about Java 7, .you will likely find answers here

If you cannot upgrade to Java 7 now, you have the option of using an older version of either the
Sync Tool (which is) or the Upload Tool (which is). This version ofavailable here available here
the Sync Tool only includes a command line interface. The Upload Tool provides a graphical
interface (a GUI), but is not as full featured as the Sync Tool.

Sync Tool Interfaces

The Sync Tool has two interfaces, providing the choice of whether the user prefers a command line or a graphical
display.

Graphical interface
Provides a web-browser-based application user interface which begins with a configuration wizard,
then provides a dashboard display showing the current status of the sync process.

Command line interface
Provides a command line interface which can be executed directly, used in scripts, or used for
scheduling sync activities (such as within a cron job.)
Provides access to all feature of the Sync Tool, some of which are not available (yet) in the graphical
interface.

Metadata

As the Sync Tool transfers files to DuraCloud, it will attempt to capture certain types of metadata about each file,
and include that information as part of the content item added to DuraCloud. The list below describes the metadata
that is captured automatically. You have the option to add, update, or delete the properties of each file after it has
been transferred to DuraCloud.

Mime Type
The content type of the file.
As the Sync Tool transfers your files to DuraCloud, it attempts to determine the mime type of each file
based on the file's extension. If it cannot determine a mime type for a given file, that file's type is set to
"application/octet-stream", which is a generic mime type for binary data. Select the "Edit" button on the
DuraCloud web interface to change a file's mime type.

If you find that files with certain extensions are not being mapped as you would prefer, you can always
change the value on uploaded files from within DuraCloud. If you would like to make sure that files with
a given extension are given your preferred mime type during upload, you simply need to update the
mapping file. The mapping of file extension to mime type is determined by a file included in your Java
installation called content-types.properties. This file is usually located in the "lib" folder under your Java
runtime installation directory. After making a copy of the original file as a backup, simply update it
following the formatting conventions used throughout the file to include the mappings you prefer, then
save the file. After making changes, you will need to re-start the Sync Tool to ensure that the changes
are picked up properly.

Space
The space in which a content item is stored. This field cannot be edited.

Size
The size of a content item. This field cannot be edited.

Modified

http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/faq/java_mac.xml
http://docs.duraspace.org/duracloud/2.1.1/downloads/synctool-2.1.1-driver.jar
http://docs.duraspace.org/duracloud/2.1.1/downloads/uploadtool-2.1.1-driver.jar

The date on which the file was added to DuraCloud. This value is updated when a file is added or
updated.

Checksum
The MD5 checksum of the file. This field cannot be edited.

Creator
The creator is the DuraCloud user who transferred the file into DuraCloud storage.

Content file path
The full path of the file in its original storage location

Content file created
The date when the file was created, as determined by the originating file system. This information may
not be available from all file systems.

Content file modified
The date when the file was last modified, as determined by the originating file system. This information
may not be available from all file systems.

Content file last accessed
The date when the file was last accessed, as determined by the originating file system. This
information may not be available from all file systems.

DuraCloud Sync Tool - Command Line

Introduction

The Sync Tool is a utility which was created in order to provide a simple way to move files from a local file system to
DuraCloud and subsequently keep the files in DuraCloud synchronized with those on the local system.

Download

Download the sync tool from the Downloads page. Note that this is the same file as is available via the "Get Sync
Tool" button on the DuraCloud UI.

Interfaces

The Sync Tool provides two interfaces, a command line and a graphical user interface. More information about the
graphical interface can be found here.

How the Sync Tool Works
When you run the Sync Tool for the first time, you must include DuraCloud connection information (host, port,
username, password) as well as the space where you would like all of your files stored. You must also
provide a list of directories which will be synced to DuraCloud and a directory for the Sync Tool to use for its
own work.
When the Sync Tool starts up, it will look through all of the files in each of the local content directories and
add them to its internal queue for processing. Each of those files will then be written to your DuraCloud
space. As this initial write is happening a listener is set up to watch for any file changes within each of the
content directories. As a change occurs (a file is added, updated, or deleted), that change is added to the
queue, and the appropriate action is taken to make the DuraCloud space consistent with the local file (i.e. the
file is either written to the space or deleted from the space.)
You can stop the Sync Tool at any time by typing 'x' or 'exit' on the command line where it is running. It will
stop all listeners, complete any file transfers that are in progress, and close down.
When you restart the Sync Tool, if you point it at the same work directory, it will pick up where it left off. While
the Sync Tool is running, it is constantly writing backups of its internal queue, so it first reads the most current
backup and begins processing the files there. It then scans the content directories to see if there are any files
which have been added or updated since the last backup, and it also pulls a list of files from the DuraCloud

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

space and scans that list to see if any local files have been deleted. Any changes detected are added to the
internal queue, and the Sync Tool continues to run as usual.

Operational notes
Running

To ensure that the command line interface is selected, at least one command line option must be
included when executing the Sync Tool on the command line. To see the help text, simply include
a "--help" parameter.

Restarting
You can perform a restart of the Sync Tool by using the -g command line option to point to the Sync
Tool configuration file, which is written into the work directory (named synctool.config)
If you would like the Sync Tool to perform a clean start rather than a restart (i.e. you would like it to
compare all files in the content directories to DuraCloud) you will need to either point it to a new work
directory, or clear out the existing work directory.
The Sync Tool will perform a clean start (not a restart) if the list of content directories is not the same
as the previous run. This is to ensure that all files in all content directories are processed properly.

Getting a clean start
If you specifically do not want to restart from a previous run, and would like to ensure that the sync tool
considers every file in all directories specified, you can use the -l (or --clean-start) command line option
to indicate this desire.
A clean start will also occur by default whenever the host, destination space, destination store, or the
list of content directories changes from one run of the tool to the next.

Collisions
The Sync Tool allows you to sync multiple local directories into a single space within DuraCloud.
Because of this, there is the possibility of file naming collisions, where two local files resolve to the
same DuraCloud ID. If this happens, one file will be overwritten by the other. There are a few ways to
ensure that this does not occur:

Ensure that the top level files and directories within the set of content directories do not have
overlapping names.
Sync only a single directory to a space. You can run multiple copies of the Sync Tool, each over
a single local directory, syncing to its own DuraCloud space.

Work Directory default
As of DuraCloud version 2.3.0, the work directory parameter is not required. If not specified, the work
directory will be named "duracloud-sync-work", and will be placed under the user's home directory

Work Directory - these files and directories can be found in the work directory (specified using the -w
command line parameter)

Config Files
When the Sync Tool starts up, it writes the list of parameters and values provided by the user
on startup to a file called synctool.config in the work directory. This file can be used to restart
the Sync Tool, using the -g parameter to point to the file's location. You can also restart the
Sync Tool by indicating the same set of options as used originally. The -g parameter is for
convenience only and is not required in any circumstance. Note that this file is overwritten each
time the Sync Tool is run with a different set of parameters, so you may choose to copy the file
elsewhere (or give it a new name) if you would like to keep a copy of a particular configuration
set.
You may also see a file named synctool.config.bak in the work directory which is used to
compare against the current config in order to determine if a restart is possible. In order for a
restart to occur, the list of content directories (-c parameter) must be the same as the previous
execution of the tool, and there must be at least one changed list backup (see below.)

Changed List Directory
While the Sync Tool is running it is constantly updating the list of files which have been changed
(when starting the first time, this includes all files in the directories that need to be synced). In
order to allow the Sync Tool to restart after it has been stopped, this list of files is continually

backed up into the directory. There is no reason to edit these files, but you maychangedList
choose to delete the directory along with the config files mentioned above tochangedList
ensure that the Sync Tool does not attempt to perform a restart.

Logs Directory
Information about what the Sync Tool is doing while it is running can be found in the
sync-tool.log file. It is a good idea to monitor this file for errors and warnings as this information
is not printed to the console.
The duracloud.log file is useful for application debugging when the information in the
sync-tool.log file is insufficient to understand a problem.

Time Stamps
As of DuraCloud version 2.3.0, the Sync Tool will collect time stamp information for each transferred
file from the file system and store this information as properties on the content item in DuraCloud
Note that the time stamps collected may vary somewhat based on the operating system and file
system on which the content is stored

Prerequisites

As of DuraCloud version 2.2.0, the Sync Tool requires Java 7 to run. The latest version of Java
can be downloaded from here.

You must have Java version 7 or above installed on your local system. If Java is not installed, or if a previous
version is installed, you will need to and install Java 7. To determine if the correct version of Java isdownload
installed, open a terminal or command prompt and enter

java -version

The version displayed should be 1.7.0 or above. If running this command generates an error, Java is likely
not installed.

You must have downloaded the Sync Tool. It is available as a link near the top of this page.

Using the Sync Tool
To run the Sync Tool, open a terminal or command prompt and navigate to the directory where the Sync Tool
is located
To display the help for the Sync Tool, run

java -jar duracloud-sync-{version}.jar --help

When running the Sync Tool for the first time, you will need to use these options:

Short Option Long Option Argument
Expected

Required Description Default Value
(if optional)

http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/index.jsp
http://www.java.com

-h --host Yes Yes The host
address of the
DuraCloud
DuraStore
application

-r --port Yes No The port of the
DuraCloud
DuraStore
application

443

-i --store-id Yes No The Store ID
for the
DuraCloud
storage
provider

The primary
storage
provider is
used

-s --space-id Yes Yes The ID of the
DuraCloud
space where
content will be
stored

-u --username Yes Yes The username
necessary to
perform writes
to DuraStore

-p --password Yes Yes The password
necessary to
perform writes
to DuraStore

-c --content-dirs Yes Yes A list of the
directory paths
to monitor and
sync with
DuraCloud. If
multiple
directories are
included in this
list, they should
be separated
by a space.

-w --work-dir Yes No The state of the
sync tool is
persisted to
this directory. If
not specified,
this value will
default to a
directory
named
duracloud-sync
-work in the
user's home
directory.

-f --poll-frequency Yes No The time (in
ms) to wait
between each
poll of the
sync-dirs

10000 (10
seconds)

-t --threads Yes No The number of
threads in the
pool used to
manage file
transfers

3

-m --max-file-size Yes No The maximum
size of a stored
file in GB
(value must be
between 1 and
5), larger files
will be split into
pieces

1

-d --sync-deletes No No Indicates that
deletes
performed on
files within the
content
directories
should also be
performed on
those files in
DuraCloud; if
this option is
not included all
deletes are
ignored

Not set

-x --exit-on-compl
etion

No No Indicates that
the sync tool
should exit
once it has
completed a
scan of the
content
directories and
synced all files;
if this option is
included, the
sync tool will
not continue to
monitor the
content dirs

Not set

-l --clean-start No No Indicates that
the sync tool
should perform
a clean start,
ensuring that
all files in all
content
directories are
checked
against
DuraCloud,
even if those
files have not
changed locally
since the last
run of the sync
tool

Not set

-e --exclude Yes No Not set

The full path to
a file which
specifies a set
of exclusion
rules. The
purpose of the
exclusion rules
is to indicate
that certain
files or
directories
should not be
transferred to
DuraCloud.
The rules must
be listed one
per line in the
file. The rules
will match only
on the name of
a file or
directory, not
an entire path,
so path
separators
should not be
included in
rules. Rules
are not case
sensitive (so a
rule "test.log"
will match a file
"test.LOG").
The rules may
include
wildcard
characters ?
and *. The ?
matches a
single
character,
while *
matches 0 or
more
characters.

Examples of
valid rules:
test.txt :
Will match a
file named
"test.txt"
test :
Will match a
file or directory
named "test"
test.* :
Will match files
like "test.jpg",
"test.txt",
"test.doc", etc
*.log :
Will match files
named
"test.log" or
"daily-01-01-20
50.log" as well
as a directory
named ".log"
backup-19?? :
Will match a
directory
named
"backup-1999"
but not
"backup-19000
0" or
"backup-2000"

When the Sync Tool runs, it creates a backup of your configuration in the work directory that you specify.
When running the tool again, you can make use of this file to keep from having to re-enter all of the options
specified on the initial run. In this case you need only a single option:

Short Option Long Option Argument
Expected

Required Description

-g --config-file Yes Yes Read configuration
from this file (a file
containing the
most recently used
configuration can
be found in the
work-dir, named
synctool.config)

An example for running the Sync Tool

java -jar duracloud-sync-{version}.jar -c C:\files\important -h
test.duracloud.org -s important-dir-backup -u myname -p mypassword

Runtime commands
While the Sync Tool is running, these commands are available. Just type them on the command line where
the tool is running. These commands are not available when running in exit-on-completion mode.

Short Command Long Command Description

x exit Tells the Sync Tool to end its
activity and close

c config Prints the configuration of the
Sync Tool (the same information
is printed at startup)

s status Prints the current status of the
Sync Tool

l <Level> N/A Changes the log level to <Level>
(may be any of DEBUG, INFO,
WARN, ERROR)

h help Prints the runtime command help

DuraCloud Sync Tool - Graphical UI

Introduction

The Sync Tool is a utility which was created in order to provide a simple way to move files from a local file system to
DuraCloud.

Download

Download the Sync Tool from the Downloads page. Note that this is the same file as is available via the "Get Sync
Tool" button on the DuraCloud UI.

Interfaces

The Sync Tool provides two interfaces, a command line and a graphical user interface. More information about the
command line interface can be found here.

Running the Sync Tool
To use the Sync Tool, you will first need to download it. This can be done via the downloads page (see the
top of this page) or via the "Get Sync Tool" button on the DuraCloud UI.
Once you have the Sync Tool, you can execute it in one of two ways. Either of these will work, and they both

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

provide the same result. There is no benefit to one over the other.
Double-click the Sync Tool file
From a command line, run:

java -jar duracloud-sync-{version}.jar

The Sync Tool will start up and open your default web browser to: (tip: bookmarkhttp://localhost:8888/sync
this page for future access)
You will then be guided through a wizard to configure the Sync Tool

Operational Notes
Getting back to the Sync Tool

Once the Sync Tool is started, it will continue to run in the background, even if you close your browser.
You can also get back to the UI by pointing your browser to: .http://localhost:8888/sync

Stopping the Sync Tool
On Windows: Look for a DuraCloud Sync icon in the task tray, right click on it, select Exit
On Mac: Look for a DuraCloud Sync icon in the menu bar, right click on it, select Exit
On Ubuntu: Look for a DuraCloud Sync icon in the task bar, right click on it, select Exit

Work Directory
The work directory is named duracloud-sync-work, and can be found under your home directory
(C:\Users\[username] on Windows, /Users/[username] on Mac, /home/[username] on Linux)
In the work directory you will find:

A configuration file which includes the data you entered when configuring the tool
A logs directory with log files containing runtime status information of the Sync Tool. These can
be helpful when diagnosing a problem the tool may have had.

Prerequisites
You must have Java version 7 or above installed on your local system. If Java is not installed, or if a previous
version is installed, you will need to and install Java 7. To determine if the correct version of Java isdownload
installed, open a terminal or command prompt and enter

java -version

The version displayed should be 1.7.0 or above. If running this command generates an error, Java is likely
not installed.

You must have downloaded the Sync Tool. It is available as a link near the top of this page.

DuraCloud Java Clients

Download

Download the Store Client, Service Client, Report Client, Executor Client, and Manifest Client from the Downloads
page

Available clients

StoreClient

http://localhost:8888/sync
http://localhost:8888/sync
http://www.java.com/
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

DuraCloud provides access to files stored in cloud storage systems through an application called DuraStore.
DuraStore is installed and running on your DuraCloud instance and can be accessed via a interface. In orderREST
to aid Java developers in communicating with DuraStore, a Java client, called StoreClient was written.

ServiceClient

DuraCloud provides management capabilities to deploy, undeploy, configure, and gain status of the services within
DuraCloud through an application called DuraService. DuraService is installed and running on your DuraCloud
instance and can be accessed via a interface. In order to aid Java developers in communicating withREST
DuraService, a Java client, called ServiceClient was written.

ReportClient

DuraCloud provides reporting capabilities which assist in understanding and managing the content stored in
DuraCloud and services run through DuraCloud. These capabilities are included as part of an application called
DuraBoss. DuraBoss is installed and running on your DuraCloud instance and the reporting capabilities can be
accessed via a interface. In order to aid Java developers in communicating with the reporting features ofREST
DuraBoss, a Java client, called ReportClient was written.

ExecutorClient

DuraCloud includes a component called the Executor, which performs actions over the storage and services
maintained by DuraStore and DuraService. The Executor allows services to be run in an automated and scheduled
fashion. Similar to the reporting functions noted above, the Executor is part of an application called DuraBoss.
DuraBoss is installed and running on your DuraCloud instance and the Executor can be accessed via a interfREST
ace. In order to aid Java developers in communicating with the Executor in DuraBoss, a Java client, called
ExecutorClient was written.

ManifestClient

DuraCloud provides the ability to retrieve a manifest file for any space maintained in storage. These manifests list all
of the content items and their MD5 checksums, which can be used to compare with your local file system, or with the
contents of your DuraCloud space at a later date. This manifest capability is part of the DuraBoss application, which
is installed and running on your DuraCloud instance, and can be accessed via a interface. In order to aid JavaREST
developers in retrieving manifest documents, a Java client, called ManifestClient was written.

Using the clients

To use any of the above clients, you will need all of the jars included in the libs directory of the download package to
be available on your classpath. You will then be able to write code using the provided Javadocs to interact with the
client.

Example code

For each of the clients listed above, an example Java class has been provided to assist in set up and testing, as well
as a starting point for writing your client code. The example client (found in ExampleClient.java) includes a simple
main class which performs a subset calls the client is capable of performing, and printing information to the console.
To run an example:

Extract the client zip file
Update the HOST, PORT, USERNAME, and PASSWORD constant values in ExampleClient.java as needed
to connect to your DuraCloud instance.

https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraStore
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraService
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraBoss
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraBoss
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraBoss

1.
a.

b.

2.
a.

3.
a.

1.
a.
b.
c.

2.
a.

i.
ii.

3.
a.
b.

4.

Make sure Ant is available on your path and type "ant" to compile the example.
Type "ant run" to run the example.

DuraCloud Administration
Naming restrictions
Access Control Lists (ACLs)

This document details some of the considerations of concern to a DuraCloud administrator.

Naming restrictions
Space names

The following restrictions apply to user-defined space names
only lowercase letters, numbers, periods, and dashes
no adjacent pair of "-" and/or "."
no number immediately following the last "."
between 3 and 42 characters
must start with a letter
may not end with a dash

Note: Users can provide space names through the that do not follow these conventions, butREST-API
the space actually created will have a different name under the covers.

Reserved space names
Due to some specific operations exposed through the durastore , the following names areREST-API
unavailable as user-defined space names

init
stores
spaces
security
task

Content object names
The only restrictions are that a content object name

cannot include a question mark '?' character
cannot include a reverse solidus (backslash) '\' character
is limited to 1024 bytes (byte count is checked after URL and UTF-8 encoding)

Access Control Lists (ACLs)

Prior to DuraCloud v1.3.1, control over access to spaces was limited to setting the space-level permission to either
 or . An space permitted anonymous reads of content within that space, whereas a OPEN CLOSED OPEN CLOSED

space disallowed any reads or writes of content within that space by unauthenticated users. As of DuraCloud v1.3.1,
the space-level access control mechanisms have been richened.

Users and Groups
Access is granted to , , or combinations thereofusers groups
Users are those with credentials to access an account
Groups are collections of users that are created in the Management Console

Rights
When assigning a space ACL, and/or are granted one of two rightsusers groups

READ allows reading any content within that space
WRITE allows reading, adding, and modifying any content within that space

Public (anonymous) Access
There is a special group named 'public' that can only be granted access to a spaceREAD
If the 'public' group has access, then unauthenticated (anonymous) reads of content areREAD
permitted on that space

4.
a.

b.

1.

Use
REST API can be used to programmatically create, update, and delete space ACLs

Get Space ACLs
Set Space ACLs

DurAdmin provides authorized users to update space ACLs in the web interface

DuraCloud Services

Introduction
Duplicate on Change
Image Server
Media Streamer
Bit Integrity Checker
Bit Integrity Checker - Tools
CloudSync

Introduction

The DuraCloud application provides a set of services which can be deployed and used for a variety of purposes,
primarily to process the content which has been loaded into DuraCloud storage. The following list of services
describes how each service is expected to be used and the options available for tailoring the service to your needs.

If you start a service, you will receive an email when it completes processing. For each of the services below, if they
are run independently, they will not auto-restart if they fail during processing. If you are made aware of a failed job
state, you have the option to redeploy the service. Some services are run automatically by the DuraCloud Executor,
and as such their state is managed by the Executor. In particular, these are the Media Streamer and the Bit Integrity
Tools services.

Not all services are available in all service plans.

Duplicate on Change

Description:

The Duplicate on Change service provides a way to ensure that the content stored in DuraCloud is synchronized
between different storage providers. The Duplicate on Change service duplicates any changes made to spaces,
content, or properties for the spaces it is configured to watch. This means that once the Duplicate on Change
service is deployed, it notices all content that is added, updated, or deleted for each configured space in the
watched DuraCloud provider and performs the same functions on the selected secondary provider. All content that
is copied will be placed in an identically named space in the secondary storage location with the same property
fields attached. The duplication provided by this service is one-way; only the provider that is selected to be watched
is monitored for changes. There is also an option to set a default configuration, which is then applied to any space
that is added after the Duplicate on Change service has started. This ensures that content added to new spaces is
duplicated properly.

Note that this service only performs duplication of content after it has been deployed. Content that exists in the
provider prior to this service being deployed will not be duplicated. Existing content can be copied into a space on
the primary provider (after the Duplicate on Change has been deployed to watch it) in order to ensure it is duplicated
to the secondary provider.

Configuration Options:

Store to Watch: The primary storage location which DuraCloud will monitor for changes. When spaces,

https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-GetSpaceACLs
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-SetSpaceACLs

1.

2.

3.

1.

content, or properties are added, updated, or deleted in this store, the same actions will be taken for the
configured spaces in a secondary store.
Space to store selection: Each space in the watched provider will be duplicated in the storage provider(s)
selected. For each space, 0, 1, or more providers may be selected.
Default space to store selection: Any new space added will be configured based on this default setting. This
works the same as the space to store setting above, but applies only to spaces added after the Duplicate on
Change service is deployed.

Image Server

Description:

The Image Server provides a viewer for image files through use of the . While this service isDjatoka image server
geared towards serving JPEG 2000 images, it supports multiple image file types by converting them to JPEG 2000
format on the fly.

Note that the current implementation of this service requires that spaces be set to OPEN in order to use the viewer
to view image files.

Configuration Options:

None

Media Streamer

Description:

The Media Streamer provides streaming capabilities for video and audio files. The service takes advantage of
Amazon Cloudfront streaming, so files to be streamed must be within spaces on an Amazon provider.

Amazon Cloudfront streaming uses the Flash Media Server to host streaming files over RTMP. File formats
 For a full listing of supported file types see the supported include MP3, MP4 and FLV among others. Flash Media

.Server documentation

Configuration Options:

Source Media Space: The DuraCloud space(s) where the source video and audio files to be streamed are
stored. The Media Streamer service attempts to stream all files in the selected space(s).

Integration Files
The following files are available as a bundle on the .downloads page
They are intended as a starting point for integrating streaming media into your own website.

player.swf - The flash-based video player JWPlayer
playlist.xml - An example playlist which would include a list of items in your Source Media Space
playlistplayer.html - An HTML file which uses JWPlayer to display the items in the playlist
singleplayer.html - An HTML file which uses JWPlayer to display a single media file
stylish.swf - A supplementary flash file used to style the JWPlayer
swfobject.js - A javascript file () used to embed the JWPlayer on a web pageavailable from here
viewer.js - A javascript file used to simplify the loading of JWPlayer

All of the above files are intended as examples only. Their purpose is give developers a starting point for embedding
video streamed by DuraCloud on their own web pages.

http://djatoka.sourceforge.net
http://help.adobe.com/en_US/FlashMediaServer/3.5_TechOverview/WS5b3ccc516d4fbf351e63e3d119ed944a1a-7ffa.html#WS5b3ccc516d4fbf351e63e3d119ed944a1a-7fe7
http://help.adobe.com/en_US/FlashMediaServer/3.5_TechOverview/WS5b3ccc516d4fbf351e63e3d119ed944a1a-7ffa.html#WS5b3ccc516d4fbf351e63e3d119ed944a1a-7fe7
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads
http://www.longtailvideo.com/players/
http://code.google.com/p/swfobject/

1.
2.

1.
2.
3.

a.

1.

2.

3.

1.
2.
3.

If you add files when the Media Streamer service is already running, they too will automatically
be available for streaming.

Bit Integrity Checker

Description:

The Bit Integrity Checker provides the ability to verify that the content held within DuraCloud has maintained its bit
integrity. There are two modes of operation.
Modes:

Verify integrity of a Space
Verify integrity of an item list

When running in the mode, the checker performs the following stepsVerify integrity of a Space

collect the content hash values for each item from the underlying storage provider
stream through each item recalculating their hashes
compare the two listings

When running in the mode, the checker performs the following stepsVerify integrity of an item list

stream through each item in the provided listing, recalculating their hashes
compare the newly generated listing with the provided listing

Configuration Options:

Stores: The underlying storage provider over which the service will run
Space containing content items: The DuraCloud space in which the content items to be verified reside
Verify integrity of an item list mode

Input listing name: Name of the content item which contains the listing of items over which to run the
service

Service Ouputs
All outputs of this service are placed in the system space, .x-service-out

bitintegrity/fingerprints-gen-<spaceId>-<date>.csv
Interim listing generated with hash values from underlying storage provider

bitintegrity/fingerprints-<spaceId>-<date>.csv
Interim listing with hashes recalculated from content streams

bitintegrity/fixity-report-<spaceId>-<date>.csv
Final report with status of integrity check

Bit Integrity Checker - Tools

Description:

The Bit Integrity Checker Tools provide additional bit integrity checking utilities which can be used to perform
specific integrity checking tasks.

Modes:

Generate integrity information for a Space
Generate integrity information for an item list
Compare two integrity reports

1.
a.

i.

ii.

b.
i.

2.
a.

i.

ii.

iii.

b.
i.

3.
a.

b.

c.
i.
ii.

1.

2.

Configuration Options:

Mode 1 - Generate integrity information for a Space
Get integrity information from...

The storage provider: Determine the file MD5 by asking the storage provider for its stored MD5
value
The files themselves: Determine the file MD5 by retrieving them from the storage provider and
computing the MD5

Stores: The underlying storage provider in which the following space resides
Space containing content items: The DuraCloud space in which the content items to be
considered reside

Mode 2 - Generate integrity information for an item list
Get integrity information from...

The storage provider: Determine the file MD5 by asking the storage provider for its stored MD5
value
The files themselves: Determine the file MD5 by retrieving them from the storage provider and
computing the MD5
Input listing name: Name of the content item which contains the listing of items over which to
run the service

Stores: The underlying storage provider in which the following space resides
Space with input listing: The DuraCloud space in which the input listing file resides

Mode 3 - Compare two integrity reports
Input listing name: Name of the first content item which contains a listing of items to be compared to
the second listing
Second input listing name: Name of the second content item which contains a listing of items to be
compared to the first listing
Stores: The underlying storage provider in which the following spaces reside

Space with input listing: The DuraCloud space in which the first input listing file resides
Space with second input listing: The DuraCloud space in which the second input listing file
resides

Service Ouputs
All outputs of this service are placed in the system space, .x-service-out

bitintegrity/fingerprints-<spaceId>-<date>.csv
Listing of hashes when running in or modesfrom space from list

bitintegrity/fixity-report-<listingId-0>-vs-<listingId-1>-<date>.csv
Comparison report of two hash listings

CloudSync

Description:

The CloudSync service starts and runs the CloudSync application, which provides capabilities to allow the backup
and restore of content from a Fedora repository into DuraCloud. For more information about CloudSync, please refer
to its the .CloudSync documentation

DuraCloud Features
Application Features

Storage system REST API
Space (top level folder) listing
Space creation
Space deletion

https://wiki.duraspace.org/display/CLOUDSYNC/Fedora+CloudSync+Project
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraStore

Space access definition
Content (file) listing
Content storage
Content deletion
Content properties and tagging

Service administration REST API
Available service listing
Deployed service listing
Service deployment
Service configuration
Service undeployment

Reporting system REST API
Storage report listing
Storage report retrieval
Storage report starting and stopping
Storage report scheduling
Service report listing
Service report retrieval

Executor REST API
Scheduled execution of services
Execution status

Auditor REST API
Retrieval of audit logs

Manifest REST API
Retrieval of space-level manifests

Security requiring authentication on all DuraCloud applications
Web user interface (DurAdmin)

Access to all storage system capabilities, including space and content creation, updates, and
deletes
Access to all service administration capabilities, including service deployment, configuration,
and undeployment
Access to graphical depictions of the information contained in the storage and service reports
Bulk deletion of spaces and content items
User account administration

Core Services

Media Streamer:
Provides streaming capabilities for video and audio files.

Duplicate on Change:
Provides a simple mechanism for synchronizing your content between storage providers. A
running Duplicate on Change service will notice when a content item or space is added,
updated, or deleted in one store and duplicate those changes in other stores.

Image Server:
Deploys an instance of the Adore Djatoka web application which provides serving and viewing
of JPEG2000 images. Note that in order to view images using the Image Server, the images
must be in an OPEN space.

Bit Integrity Checker:
Provides the ability to verify that the content held within DuraCloud has maintained its bit
integrity.

Bit Integrity Checker - Tools:
Provides additional bit integrity checking utilities which can be used to perform specific integrity
checking tasks.

Tools

https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraService
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraBoss
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraBoss
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraBoss
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+REST+API#DuraCloudRESTAPI-DuraBoss
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+Services#DuraCloudServices-MediaStreamer
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+Services#DuraCloudServices-DuplicateonChange
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+Services#DuraCloudServices-ImageServer
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+Services#DuraCloudServices-BitIntegrityChecker
https://wiki.duraspace.org/display/DURACLOUD23/DuraCloud+Services#DuraCloudServices-BitIntegrityChecker-Tools

Sync Tool:
Provides a utility with both graphical and command line interfaces for keeping DuraCloud
content synchronized with the local file system.

:Upload Tool
Provides a simple graphical interface for transferring files and folders to DuraCloud.

Retrieval Tool:
Provides a command line utility for transferring content stored in DuraCloud to the local file
system.

Chunker Tool:
Provides a command line utility for transferring single files to DuraCloud. Files larger than a
configurable threshold will be "chunked" (split into multiple files) prior to transfer.

Stitcher Tool:
Provides a command line utility for retrieving single "chunked" files from DuraCloud. As the file
is retrieved, it is "stitched" (combined back into the original file).

DuraCloud Retrieval Tool

Introduction

The Retrieval Tool is a utility which is used to transfer (or "retrieve") digital content from DuraCloud to your local file
system.

Download

Download the retrieval tool from the Downloads page.

How the Retrieval Tool Works
When the Retrieval Tool starts up, it connects to DuraCloud using the connection parameters you provide
and gets a list of content items in the spaces you indicate. It will then proceed to download the files from
those spaces, each into a local directory named for the space, which is placed within the content directory.
For each content item, the Retrieval Tool checks to see if there is already a local file with the same name. If
so, the checksums of the two files are compared to determine if the local file is the same as the file in
DuraCloud. If they match, nothing is done, and the Retrieval Tool moves on to the next file. If they do not
match, the file from DuraCloud is retrieved.
By default, when a local file exists and differs from the DuraCloud copy, the local file is renamed prior to the
DuraCloud file being retrieved. If you would prefer that the local file simply be overwritten, you will need to
include the overwrite command-line flag when starting the Retrieval Tool.
As each content file is downloaded, a checksum comparison is made to ensure that the downloaded file
matches the file in DuraCloud. If the checksums do not match, the file is downloaded again. This re-download
will occur up to 5 times. If the checksums still do not match after the fifth attempt, a failure is indicated in the
output file.
As each file download completes, a new line is added to the retrieval tool output file in the work directory,
indicating whether the download was successful or not. Files which did not change are not included in the
output file.
As the Retrieval Tool runs, it will print its status approximately every 10 minutes to indicate how many files
have been checked and downloaded.
Once all files are retrieved, the Retrieval Tool will print its final status to the command line and exit.
As files are updated in DuraCloud, you can re-run the Retrieval Tool using the same content directory, and
only the files which have been added or updated since the last run of the tool will be downloaded.

Operational notes

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

Content Directory - the directory to which files will be downloaded. A new directory within the content
directory will be created for each space.
Work Directory - the work directory contains both logs, which give granular information about the process,
and output files. A new output file is createdc for each run of the Retrieval Tool, and it stores a listing of the
files which were downloaded.

Prerequisites

As of DuraCloud version 2.2.0, the Retrieval Tool requires Java 7 to run. The latest version of
Java can be downloaded from here.

You must have Java version 7 or above installed on your local system. If Java is not installed, or if a previous
version is installed, you will need to and install Java 7. To determine if the correct version of Java isdownload
installed, open a terminal or command prompt and enter

java -version

The version displayed should be 1.7.0 or above. If running this command generates an error, Java is likely
not installed.

You must have downloaded the Retrieval Tool. It is available as a link near the top of this page.

Using the Retrieval Tool
To run the Retrieval Tool, open a terminal or command prompt and navigate to the directory where the
Retrieval Tool jar file is located
To display the help for the Retrieval Tool, run

java -jar retrievaltool-{version}-driver.jar

When running the Retrieval Tool, you will need to use these options:

Short Option Long Option Argument
Expected

Required Description Default Value
(if optional)

-h --host Yes Yes The host
address of the
DuraCloud
DuraStore
application

-r --port Yes No The port of the
DuraCloud
DuraStore
application

443

http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/index.jsp
http://www.java.com

-u --username Yes Yes The username
necessary to
perform writes
to DuraStore

-p --password Yes Yes The password
necessary to
perform writes
to DuraStore

-i --store-id Yes No The Store ID
for the
DuraCloud
storage
provider

The default
store is used

-s --spaces Yes No The space or
spaces from
which content
will be
retrieved.
Either this
option or -a
must be
included

-a --all-spaces No No Indicates that
all spaces
should be
retrieved; if this
option is
included the -s
option is
ignored

Not set

-c --content-dir Yes Yes Retrieved
content is
stored in this
local directory

-w --work-dir Yes Yes Logs and
output files will
be stored in the
work directory

-o --overwrite No No Indicates that
existing local
files which
differ from files
in DuraCloud
under the same
path and name
sould be
overwritten
rather than
copied

Not set

-t --threads Yes No The number of
threads in the
pool used to
manage file
transfers

3

An example for running the Retrieval Tool

java -jar retrievaltool-{version}-driver.jar -c content -h test.duracloud.org
-u myname -p mypassword -w work -s space1 space1 -o

DuraCloud Stitcher Tool

Introduction

The Stitcher Tool is a utility which provides a simple way to retrieve "chunked" files from DuraCloud. When files are
moved to DuraCloud using either the or the and they exceed a defined size limit, they areChunker Tool Sync Tool
split (chunked) into multiple files for transfer. The Stitcher tool provides the means by which those files can be
retrieved and combined to result in the original file. It should be noted that the Stitcher Tool is also embedded into
the . If you are using , stitching will be automatically performed.Retrieval Tool Retrieval Tool

Download

Download the Stitcher Tool from the Downloads page.

Operational notes
If you want to jump directly into using the tool, download it from the link above and run the following command

java -jar stitch-{version}-driver.jar

The resulting usage statement (detailed below) should be enough to help you get started.

When using the Stitcher Tool, you need to know the ID of the manifest which was generated to list all of the
chunks of the original file. If the chunking was done by either the Chunker or Sync tool, then the name of the
manifest is the name of the original file (prefixed with any enclosing directory names) followed by

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

".dura-manifest".

Prerequisites

As of DuraCloud version 2.2.0, the Stitcher Tool requires Java 7 to run. The latest version of
Java can be downloaded from here.

You must have Java version 7 or above installed on your local system. If Java is not installed, or if a previous
version is installed, you will need to and install Java 7. To determine if the correct version of Java isdownload
installed, open a terminal or command prompt and enter

java -version

The version displayed should be 1.7.0 or above. If running this command generates an error, Java is likely
not installed.

You must have downloaded the Stitcher Tool. It is available as a link near the top of this page.

Using the Stitcher Tool
To run the Stitcher Tool, open a terminal or command prompt and navigate to the directory where the Stitcher
Tool is located and run the above command.
The following options are available when running the Stitcher Tool

Short Option Long Option Argument
Expected

Required Description Default Value
(if optional)

-m --manifest-id Yes Yes The ID of the
manifest file
used to contain
the listing of
content chunks

-d --to-dir Yes Yes Retrieved and
stitched
content is
stored in this
local directory

-s --space-id Yes Yes The space ID
in which
content and
manifest files
reside

-i --store-id Yes No The store ID for
the DuraCloud
storage
provider

The default
store is used

http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/index.jsp
http://www.java.com

1.

2.

-h --host Yes Yes The host
address of the
DuraCloud
instance

-r --port Yes No The port of the
DuraCloud
instance

443

-u --username Yes Yes The username
necessary to
perform writes
to DuraCloud

-p --password Yes Yes The password
necessary to
perform writes
to DuraCloud

DuraCloud Upload Tool

Introduction

The is a graphical utility that enables you efficiently transfer files from your local file system toUpload Tool

DuraCloud. The can be run two ways:Upload Tool

From your browser, by selecting the option to upload items into a space. This will open a new window and
display the .Upload Tool

From your desktop, by downloading the (see below) and running it as a standaloneUpload Tool

application. Execute it on your desktop system to open a new window and display the .Upload Tool

The now includes a graphical user interface option. While theDuraCloud Sync Tool
Upload Tool is still available, the Sync Tool is our recommended solution for client-side file
transfers.

Regardless of which method you choose for running the , the functions will be the same. You will beUpload Tool

able to select files and folders to be uploaded. Once the upload has started, you will see the its progress.

Download

The Upload Tools can be obtained from .Downloads page

Operational notes

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

Java Browser Security

Using the from the DuraCloud UI requires the installation of Java and its browserUpload Tool

plug-in. A number of security exploits have been found recently that use the Java browser plug-in
to compromise a desktop computer. While Oracle has fixed many of the vulnerabilities, there
remain concerns. Browser vendors have also responded to mitigate risks by updating their
products. Unfortunately, this has caused browsers to require extra steps to use the Java plug-in.
Many organizations and browser vendors have disabled the Java plug-in altogether. And, in
some cases, the browser vendors have blocked the ability to use the Java plug-in entirely
providing no good workarounds.

This does not directly affect the security of DuraCloud services, Java in general or other
functions of the UI. It does, however, affect the security of your desktop. If you choose to use the
Upload Tool in your browser, we urge you to follow the most recent guidelines for the Java
plug-in. Since this is a browser problem and each vendor has chosen different, often-changing
ways to mitigate security issues, we cannot give you accurate step-by-step instructions here for
all of them. However, you should always:

Update to the latest version of Java 7 and the plug-in
Limit use to sites you trust
Disable the Java plug-in when you are not using it

These warnings do not impact the use of the Upload Tool from your desktop, since it does not
use the browser and connects only to DuraCloud. Also, please consider using the DuraCloud
Sync Tool especially since it, as of DuraCloud 2.3, has a graphical user interface. It is now our
recommended upload method and is not subject to these security vulnerabilities.

When starting the from your desktop, you may be asked for some information necessary toUpload Tool

connect to DuraCloud. The and required are same as those you would use to log intousername password

DuraCloud. The value is the space into which you would like the uploaded files to go. There is noSpace ID

need to enter any of this information when running the in a browser from the DuraCloud UI.Upload Tool

When the starts running, it checks to see if any of the files you have selected already exist inUpload Tool

the space. It does this by checking for files with the same name. Any name matches trigger a checksum
verification to determine if the files differ. If the files are different, the file being uploaded will overwrite the file
in the space. If the files are found to be the same, no transfer occurs.

Prerequisites

As of DuraCloud version 2.2.0, the Upload Tool requires Java 7 to run. The latest version of Java
can be downloaded from here.

You must have Java version 7 or above installed on your local system. If Java is not installed, or if a previous
version is installed, you will need to and install Java 7. To determine if the correct version of Java isdownload
installed, open a terminal or command prompt and enter

java -version

http://www.java.com/en/download/index.jsp
http://www.java.com/en/download/index.jsp
http://www.java.com

The version displayed should be 1.7.0 or above. If running this command generates an error, Java is likely
not installed.

If you want to run the in the browser you have have the Java plug-in for your browser installedUpload Tool

and enables. The methods for doing this varies between browsers and platforms so you must consult your
vendor's documentation.
To run the from the desktop, you must download it (see the link above). If you only plan toUpload Tool

run it from the desktop you do not need the browser plug-in.

Using the Upload Tool
To start the from the DuraCloud UI, simply navigate to the space you would like to upload filesUpload Tool

to, and select the "Add Items" button.
To start the from the desktop, you can either simply double-click the downloaded fileUpload Tool

(depending on the setup of you desktop environment) or execute the file from the command line.
To execute the via the command line, enter the text show below and a screen to collectUpload Tool

connection parameters will be displayed:

java -jar uploadtool-{version}-driver.jar

If you choose to execute the via the command line, you have the option of providingUpload Tool

connection parameters on the command line as well. If you enter these parameter on the command
line, the first screen of the will be skipped. The connection parameters must be entered on the
command line in this order (all values are required): .host port username password spaceID

An example of running the upload tool using these parameters is shown below:

java -jar uploadtool-{version}-driver.jar institution.duracloud.org 443
jsmith secretPassword myContent

Additional help can be found .Upload Tool Help

Upload Tool Help

Upload Tool Help

Upload Tool Help
What is the Upload Tool?
The Upload Tool isn't working!
What should I see?
What should I do?

No Pop-Up
Pop-Up but not loading

It's still not working!
I need more help!

What is the Upload Tool?

The is a small application which can be used to visually select files and folders, and monitor theUpload Tool

transfer of files to DuraCloud. This tool is integrated into the DuraCloud software, and shows up when you select the

1.

2.
3.
4.
5.

1.

"Add Items" button on the DuraCloud user interface.

The Upload Tool isn't working!

We are sorry that you're not able to use the at the moment. There are a variety of reasons why the Upload Tool U

 may not be functioning properly. In the sections below, we'll offer some suggestions which may help topload Tool

resolve the problem.

What should I see?

When the is properly loaded and ready for use, you should see a window which looks similar to theUpload Tool

following:

What should I do?

No Pop-Up

If a window did not pop up when you selected the "Add Items" button, there is a good chance that your browser did
not allow the pop-up which includes the to load. Depending on your browser, you may need to click aUpload Tool

button at the top of the page to allow the pop-up to load, or add an exception to the pop-up blocker for the
DuraCloud website.

Pop-Up but not loading

If the window popped up when you clicked the "Add Items" button, but the did not load into it, try theUpload Tool

following actions. Note that once the loads properly, there is no reason to continue with further itemsUpload Tool

in this list:

As of version 2.2.0, DuraCloud requires the use of Java 7. For the Upload Tool to work correctly
in your browser, your browser will need to have the proper plugins installed. toClick here
determine which version of Java is installed in your browser. If the version indicated by this tool is
7 or above, then the plugins that are installed should be sufficient for using the Upload Tool. If
the version is 6 or below, follow the instructions to upgrade to the latest version of Java.

If there are any dialogs or selectors which ask for permission to load a Java applet, ensure that you have
selected the option to allow the applet to load
Refresh the window by selecting the window, right clicking, and selecting "Reload".
Close the pop-up window, and select "Add Items" again.
Close your browser, open it again, log back into DuraCloud, then select "Add Items" again.
Try a different browser. The recommended options are Mozilla Firefox and Google Chrome.

If it's still not working, consider trying these more advanced techniques:

http://www.java.com/en/download/installed.jsp?detect=jre&try=1

1.
2.

3.
a.
b.
c.

Clear your browser's cache, restart your browser, and try the again.Upload Tool

Ensure that the Java plug-in within your browser is up-to-date and enabled. If an update was required, restart
the browser and try the again.Upload Tool

Clear the applet cache
Open a terminal window. On Windows, this is called Command Prompt.
Type "javaws -uninstall" and hit Enter
Restart your browser, and try the againUpload Tool

It's still not working!

If none of the above actions worked, you may want to try running the directly from your machine.Upload Tool

Directions for downloading and running the locally can be found on the pageUpload Tool DuraCloud Upload Tool
.

The now includes a graphical user interface option. While the Upload ToolDuraCloud Sync Tool
is still available, the Sync Tool is our recommended solution for client-side file transfers.

I need more help!

Finally, if you need further help either getting the to work for you or just determining the best strategyUpload Tool

for transferring content into DuraCloud, you can submit a support request ticket through the DuraCloud Support
.System

Known Issues

The following issues are known to exist in release 2.3.0 of DuraCloud:

Title Issue Tracker Item Work Around

Incorrect redirects from
HTTP to HTTPS

When performing
PUT/POST/DELETE
requests via the REST
API, if the URL uses
http:// rather than https://
the response is a 404.

DURACLOUD-255 Use https:// when
performing requests via
the REST API of hosted
DuraCloud instances

Incorrect MIME types set
on files

When uploading files via
the sync tool which do not
have an extension, the
MIME type is always set
to application/octet-stream

DURACLOUD-227 Set the MIME type of
these files either through
DurAdmin or via the
REST API

Administrative files in
storage report graphs

The storage report
information displays all
files in DuraCloud,
including all of the
administrative files

DURACLOUD-514 View reports for content
spaces directly

More issues and planned improvements can be found on the .DuraCloud issue tracker

Deploying DuraCloud from Binaries

http://duracloud.kayako.com/
http://duracloud.kayako.com/
https://jira.duraspace.org/browse/DURACLOUD-255
https://jira.duraspace.org/browse/DURACLOUD-227
https://jira.duraspace.org/browse/DURACLOUD-514
https://jira.duraspace.org/browse/DURACLOUD

1.
2.
3.

4.
a.

b.
5.

a.
b.
c.
d.

e.

f.

g.

6.
a.
b.

c.

If you run into problems trying to install and run DuraCloud, the best place to ask questions is on
the DuraCloud Dev mailing list

As of version 2.2.0, To determine the version of Java installed onDuraCloud requires Java 7.
your system, open a terminal (command prompt) and run the command "java -version". If the
version number printed is less than 1.7, you will need to upgrade your Java version prior to
running DuraCloud.

The steps below outline how to start up a DuraCloud instance from the binary distribution.

Download the binary distribution from the downloads page
Install Tomcat application server (versions 5.5.x and 6.0.x are known to work)
Install ActiveMQ and configure it to [SOMEHOST]:61617. Since the ActiveMQ broker is a shared service it
can be installed on any host or an existing broker can be used.
Deploy the web applications

Take the 4 .war files included in the binary distribution and copy them into the "webapps" directory
under your tomcat installation.
Start tomcat, as part of the startup process, tomcat will unpack the wars and deploy them

Start up the OSGi container
Unpack the osgi-container zip file from the distribution package
Create an empty directory which will serve as the execution directory for the services
Create a BUNDLE_HOME environment variable pointing at the full path to the new execution directory
From a command prompt, step down into the runner directory under the unpacked osgi-container
directory
Make the run.sh script executable

chmod +x run.sh

execute run.sh
Note: Errors of the type "ClassNotFoundException: org.apache.jasper.servlet.JspServlet" can
be safely ignored

Wait a few moments for startup to complete. Then hit enter to get a prompt and type "ss". You should
see a list of 50 bundles which are in either the ACTIVE or RESOLVED states.

Initialize the DuraCloud applications
Open the init.properties file found in the distribution package
Edit the values that are contained in brackets "[...]" to be appropriate for your environment. This is the
step where most problems tend to show up, so feel free to ask questions regarding what values need
to be included in this file.
A few notes on editing this file:

The value of [host] will almost certainly be: localhost
You will need to have your own Amazon S3 account in order to connect. The "username" and
"password" in the init.properties file, in the case of Amazon, refer to the Access Key ID and the
Private Access Key that are used to make API connections to Amazon Web Services.
You probably want to comment out (using '#') the section starting with 'durastore.storage-acct.1',
unless you also want to create a Rackspace CloudFiles account.
The version number below is currently, 2.2.0

https://groups.google.com/group/duracloud-dev
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

6.

c.

d.

e.

7.
a.

b.

c.

1.

a.

duraservice.primary-instance.services-admin-context=org.dura
cloud.services.admin_[VERSION]

Even though they are not in brackets, you will probably want to update the values of
duraservice.service-storage.space-id and duraservice.service-storage.service-xml-id. I'd
recommend these values:

duraservice.service-storage.space-id=duracloud-2-3-0-service-repo
duraservice.service-storage.service-xml-id=duracloud-2-3-0-service-
repo.xml

The security user settings at the bottom allow you to indicate the username and password users
accounts that can access your local DuraCloud, you'll use these credentials to log in to
DuraCloud after initialization

Execute the app-config jar, passing in the init.properties file as a parameter

java -jar app-config.jar init.properties

The very last line of output from the execution of the app-config process should be "success". If that's
not the case, look at the output more closely to determine what error may have occurred.

Add services
At this point, the applications are deployed and initialized. Point your browser to http://localhost:8080/d

 and log in to DurAdmin.uradmin
On the spaces tab, create a space called: duracloud-2-3-0-service-repo (assuming you took the
naming suggestions above)
Use the Add Items button to add all of the files included under the services directory in the distribution
package to this new space.

This should be it. You should now be able to perform all space functions and deploy services

Service Development Guide

Introduction

This document is intended to provide guidelines for developing your own custom services that can be deployed into
the DuraCloud services framework.
The framework has been designed to allow any Java code that can be deployed as an OSGi bundle and implements
the interface to be dynamically installable into a running DuraCloud application instance.ComputeService

Overview

In order to understand the flow of services within the services framework, there are several entities with which to
become familiar:

DuraService

web application that exposes a REST-API for end-user management of services

https://svn.duraspace.org/view/duracloud/trunk/services/computeservice/src/main/java/org/duracloud/services/ComputeService.java

1.

a.
b.
c.
d.
e.

2.

3.

a.
b.

c.
4.

5.

1.
2.
3.
4.
5.

1.
2.

1.

deploy service
undeploy service
configure service
get service listing
get service properties

responsible for retrieving a service to be deployed from the and streaming it to the Service Registry S
ervicesAdmin
responsible for mediating subsequent end-user management of deployed services to ServicesAdmin
responsible for passing service configuration to the OSGi container when a service is being deployed.

service configuration is defined in the service-repo.xml which is built based on the clServiceInfo
ass for each service

Service Registry

persistent holding area of deployable services
contains and a single services-configuration descriptor XML objectService Packages
implemented as one or more DuraCloud "space(s)"

the properties file to initialize DuraCloud contains duraservice.service-storage properties which
allow configuration of the host, port, context and space

Service Package

for simple services, this can be a single OSGi bundle, jar file
for more involved services, this would be a zip file containing

OSGi bundle jar that implements the interfaceComputeService
OSGi bundle jars that are both dependencies of the ComputeService bundle (above) and not
among the base bundles installed in the by defaultOSGi Container
any support files (see 'Example Services' below)

ServicesAdmin

management component resident in the OSGi container
exposes an internal REST-API through which communication from takes placeDuraService
responsible for actually communicating with services via their common interfacesComputeService
responsible for keeping track of currently deployed services and dependency-link counters

OSGi Container

production implementation currently in use is Equinox
bundles installed by default are listed as dependencies in the pom-run.xml file in the ServicesAdmin
project

Example Services

All of the below services are currently functional and available in the DuraCloud source baseline.
They can all be found within the directoryservices

Pure Java Services

Hello Service
Replication Service
WebAppUtil Service
ImageConversion Service
MediaStreaming Service

Web Application Services

HelloWebAppWrapper Service
J2K Service

System Services

https://svn.duraspace.org/view/duracloud/trunk/duraservice/src/main/java/org/duracloud/duraservice/config/
https://svn.duraspace.org/view/duracloud/trunk/services/computeservice/src/main/java/org/duracloud/services/ComputeService.java
https://svn.duraspace.org/view/duracloud/trunk/services/computeservice/src/main/java/org/duracloud/services/ComputeService.java
https://svn.duraspace.org/view/duracloud/trunk/services/servicesadmin/pom-run.xml?view=markup
https://svn.duraspace.org/view/duracloud/trunk/services/servicesadmin/pom-run.xml?view=markup
https://svn.duraspace.org/view/duracloud/trunk/services/

1.
2.

Script Service
ImageMagick Service

Building DuraCloud Software from Source

Introduction
Prerequisites
Setting up DuraCloud

Build and deploy the DuraCloud web applications
Set up the OSGi services container
Initialize the DuraCloud applications
Test your installation

Optional items
Code coverage
Service tests within OSGi (Linux only)
Logging

DuraCloud internal tools
ServicesAdmin CLI
Building Java client packages

Misc configuration/discussion
Services on Windows

Introduction

If you would prefer to install DuraCloud from a binary distribution, you can find instructions for
.that process here

DuraCloud application software is composed of many parts. A breakdown of the primary pieces is as follows:

DuraStore - this web application provides the access to and management of storage resources, which
includes handling the storage portion of the DuraCloud REST API
StorageProviders - this set is made up of the StorageProvider interfaces and the implementations which
connect to distinct cloud stores (currently Amazon S3, Rackspace CloudFiles, and Windows Azure)
DuraService - this web application handles the deployment and management of services within DuraCloud,
which includes handling the services portion of the DuraCloud REST API
DuraBoss - this web application includes the reporter, executor, auditor, and manifest projects, each of which
expose their own distinct set of calls via the DuraCloud REST API
DurAdmin - this web application is the UI front end of DuraCloud, it provides users with a view into the
information available from the other applications. DurAdmin uses the REST APIs of the other applications to
communicate with them.
Services - the set of all deployable services, as well as the support projects that allow the DuraCloud services
infrastructure to function
Security - handles security for the DuraCloud applications
Common - a set of projects which provide utilities for other portions of the codebase to reuse

The DuraCloud software, by its very nature, is designed to be integrated with underlying cloud storage providers. As
may be expected, these integrations are necessary for the system to be properly exercised. In order for DuraCloud

1.
2.
3.
4.

1.
a.

2.
3.
4.
5.

1.

2.

3.
a.

to connect to these underlying providers, appropriate credentials must be provided as part of the application
initialization step. It is recommended that you acquire the necessary storage provider credentials prior to attempting
to set up DuraCloud. Only one storage provider is required to run DuraCloud.

The storage providers which are currently supported are listed here.

This guide lays out the steps necessary to begin using DuraCloud:

Build and deploy the DuraCloud web applications
Set up the OSGi services container
Initialize the DuraCloud applications
Test your installation

Although this document is written from a Linux environment perspective, analogous builds/installations have been
tested in Windows (but may have limitations, as noted below). Any comments or feedback are welcomed.

Prerequisites

Software that must be installed on your system prior to building/using DuraCloud

Java 7
The Oracle JDK is recommended for building DuraCloud, as this is the JDK used for DuraCloud testing
and the djatoka service (used as a basis for one of the DuraCloud services) has known compatibility
issues with open-jdk.

Maven 2.2.1 or above
Tomcat 6.x or above
ActiveMQ 5.7 or above
Subversion

Setting up DuraCloud

Any portions of the configuration below for which you need to include a replacement value will be
written in all capital letters and included in brackets: [LIKE-THIS]

Build and deploy the DuraCloud web applications

Check out latest stable release from Subversion repository

svn co https://svn.duraspace.org/duracloud/tags/duracloud-2.3.1

Set environment variables

export JAVA_OPTS="-XX:MaxPermSize=256m"
export MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=1024m"

Configure Tomcat
Add to $CATALINA_HOME/conf/tomcat-users.xml

3.
a.

4.

5.
6.

7.

<tomcat-users>
 <role rolename="manager"/>
 <role rolename="admin"/>
 <user username="[ANY-USERNAME]" password="[ANY-PASSWORD]"
roles="admin,manager"/>
</tomcat-users>

Start Tomcat

$CATALINA_HOME/bin/startup.sh

Configure Maven2
Add tomcat user to $M2_HOME/conf/settings.xml

<servers>
 <server>
 <id>tomcat-server</id>
 <username>[ANY-USERNAME]</username>
 <password>[ANY-PASSWORD]</password>
 </server>
</servers>

Modify the default ActiveMQ configuration file (there a many configuration options but this is quick approach)

cd [ACTIVEMQHOME]/conf
cp activemq.xml activemq.xml.orig
[yourfaveditor] activemq.xml

DuraCloud expects the broker to run on localhost:61617. We will make it the default for simplicity by finding
the "transport" stanza and modifying it.

7.

8.

9.
a.

1.

a.

b.
c.

<transportConnectors>
 <!-- DOS protection, limit concurrent connections to 1000 and frame
size to 100MB -->
 <transportConnector name="openwire"
uri="tcp://0.0.0.0:61617?maximumConnections=1000&wireformat.maxFra
meSize=104857600"/>
 <!-- <transportConnector name="openwire"
uri="tcp://0.0.0.0:61616?maximumConnections=1000&wireformat.maxFra
meSize=104857600"/> -->
 <transportConnector name="amqp"
uri="amqp://0.0.0.0:5672?maximumConnections=1000&wireformat.maxFra
meSize=104857600"/>
</transportConnectors>

Start ActiveMQ

cd [ACTIVEMQHOME]/bin
./activemq start

Build
From top of source tree

mvn clean install

Set up the OSGi services container

This step assumes the successful completion of the previous build instructions

Linux/Mac

Start OSGi service container

cd //services/servicesadmin
mvn clean -f pom-run.xml pax:provision
cd runner
chmod +x run.sh
export BUNDLE_HOME=[DURACLOUD_HOME]/osgi-container
./run.sh

Where [DURACLOUD_HOME] is a directory where the application has write access (can
be same as <duracloud.home> set in Maven settings.xml above)
The run.sh script will start an OSGi container and commandline interface to it
The container starts with required bundles including the 'services-admin' installed

1.

2.

a.

b.

c.

3.
a.
b.

c.
4.

a.
b.

1.

2.

1.
a.

b.

Windows

Set up OSGi service container

cd services/servicesadmin
mvn clean -f pom-run.xml pax:provision
cd runner

(Optional) Set the OSGi bundle storage location

set BUNDLE_HOME=[BUNDLE_HOME]

Where [BUNDLE_HOME] is the full path to an empty directory where the osgi container
content will be stored
Open the run.bat file in the runner directory in a text editor and replace all instances of
"$BUNDLE_HOME" with "%BUNDLE_HOME%"
Note: A directory called "$BUNDLE_HOME" under the runner directory will be used as the
default bundle home if one is not specified.

(Optional) Set up logging
Download the logback.xml file into your bundle home directory.found here
Open the logback.xml file in a text editor and edit the LOG_FILENAME property to point to
a full file path (including file name) for a log file.
Note: One benefit to performing this step will be faster start time for your OSGi container.

Start OSGI service container

run.bat

The run.bat script will start an OSGi container and commandline interface to it
The container starts with required bundles including the 'services-admin' installed

Once the OSGi services container is running, check to ensure that it was created properly

In the console where the "run" script was executed, an "osgi" prompt should be available. If it is not available,
hitting enter should bring it up.
Type "ss" and hit enter. This should list all of the available bundles. This list should include 50 items, all of
which are either in the ACTIVE or RESOLVED state.

Initialize the DuraCloud applications

Use the application initialization (app-config) utiltiy to configure the deployed DuraCloud applications
Build app-config utility, from within the //app-config module

mvn assembly:assembly

Run the app-config utility

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

1.

b.

i.

c.

1.
a.
b.
c.
d.

2.

1.

2.

3.

java -jar target/app-config-[VERSION]-driver.jar <init.props>

The init.props file is a configuration file which specifies all of the information necessary for the
DuraCloud applications to run. An example of this file can be found at
//app-config/src/main/resources/init.props. This file will need to be updated to match your
environment.

When the app-config utility completes successfully, the last line of output printed to the console will be
the word "success". If this is not the case, check that your configuration file includes the correct
information.

Test your installation

Once all of the above steps have been completed, your DuraCloud should be ready to test.
Go to (change host or port as necessary).http://localhost:8080/duradmin
Log in using the credentials provided in your configuration file
You should be able to view, add, update, and delete spaces and content in Spaces tab
You should be able to deploy services in the Services tab

Congratulations! You now have a functional DuraCloud installation.

Optional items

Code coverage

If you plan on using Clover, the following element needs to be added to your maven 'settings.xml'

<profiles>
 <profile>
 <id>profile-clover</id>
 <activation>
 <property>
 <name>profile</name>
 <value>clover</value>
 </property>
 </activation>
 <properties>
 <cloverLicense>[LOCATION-OF-clover.license-FILE]</cloverLicense>
 </properties>
 </profile>
</profiles>

To run clover

mvn clover2:instrument clover2:aggregate clover2:clover -Pprofile-clover

A report will be generated in the following directory:
//target/site/clover/

Service tests within OSGi (Linux only)

1.

a.

1.
2.

1.

2.

1.

2.

Assuming that the OSGi services container is set up and running (as described above), tests that deploy
services into the OSGi environment may be run

From inside the //integration-test module

mvn install -PrunServicesAdminTests

Logging

DuraCloud uses the SLF4j logging framework backed by the LogBack implementation
By adding either a logback.xml or logback-test.xml file on the classpath, logging configuration can be
customized

DuraCloud internal tools

ServicesAdmin CLI

This tool provides a command line interface for interacting with the 'services-admin' installed in a running
OSGi container (see notes above for starting the container)
To build and run the CLI, from within the //servicesadminclient module

mvn assembly:assembly
java -cp target/servicesadminclient-[VERSION]-cli.jar

Building Java client packages

To create a distributable zip of the storeclient, serviceclient, or reportclient which includes their dependencies,
from within the project directory (//storeclient, //serviceclient, //reportclient) run

mvn install -Ppackage-client

The packaged zip will be found under the project's target directory

Misc configuration/discussion

Services on Windows

The following services do not function in a Windows deployment environment

WebAppUtilService
HelloWebappWrapper
J2KService
ImageMagickService

If you would like to run the ImageConversionService, you must install ImageMagick and have its /bin directory in
your PATH, which is essentially what the ImageMagickService does in a Linux environment.

DuraCloud Storage

Introduction

1.
2.

1.

DuraCloud provides a mediation layer over cloud storage systems. The architecture of DuraCloud is such that
several of these storage systems, which DuraCloud calls "storage providers", can be configured and put into use at
one time. DuraCloud expects that there will be one primary storage provider, then permits any number of secondary
providers to be configured. The primary provider is the location in which content is stored immediately upon user
transfer; content is then automatically copied to all configured secondary providers. The lists below indicate the
primary and secondary storage providers currently available through the production DuraCloud hosted service, as
well as the storage providers which are included in the DuraCloud open source code base, but are not currently
considered production level quality.

Current DuraCloud Storage Providers

Primary storage providers

Storage providers which are used as a primary storage location within DuraCloud. A primary provider can be used
alone or with any number of secondary providers.

Amazon S3

Secondary storage providers

Storage providers which are available as a secondary storage location in DuraCloud. Content in the primary storage
provider is duplicated into all configured secondary providers.

SDSC Cloud Storage
Rackspace Cloud Files
Amazon Glacier

Development storage providers

Storage providers which are not made available in production DuraCloud environments because their current level
of development and/or testing is not yet sufficient. Providers on this list may be scheduled to move into production
status or may be held back due to technical or business reasons. These providers are available as part of the open
source DuraCloud codebase, but it is not recommended that they be used in a production environment at this time.

HP Cloud Object Storage
Microsoft Windows Azure Storage
IRODS
EMC Atmos

DuraCloud Security

Overview

The security approach is divided into two distinct spheres of responsibility

Channel security (encryption)
Application security (AuthN / AuthZ)

The configuration of any given user compute instance will consist of an Apache HttpServer layered on top of
Tomcat.

Apache HttpServer
All requests will come through Apache on port 443 (https) of the instance
The requests will internally be unencrypted, where encryption exists, and redirected to tomcat as open

http://aws.amazon.com/s3/
https://cloud.sdsc.edu/hp/index.php
http://www.rackspace.com/cloud/files/
http://aws.amazon.com/glacier/
https://www.hpcloud.com/products/object-storage
http://www.windowsazure.com/en-us/manage/services/storage/
https://www.irods.org
http://www.emc.com/storage/atmos/atmos.htm

1.

2.

1.

2.

1.
2.

3.
a.
b.

i.

ii.
4.

text
Tomcat

A defined set of resource endpoints will require AuthN and AuthZ
Spring-security is being leveraged to wire AuthN and AuthZ across relevant resources

Channel Security Implementation
Apache HttpServer is configured to require all requests to the four DuraCloud web applications (/duradmin,
/durastore, /duraservice, and /duraboss) go over https.
Below are the https enforcement rules configured in Apache

###
 # ensure 'duradmin' uses https
 ###

 RewriteCond %{REQUEST_URI} /duradmin
 RewriteCond %{SERVER_PORT} !^443$
 RewriteRule ^(.*)$ https://%{SERVER_NAME}$1 [R=301,L]

 ###
 # try to require https for 'durastore', 'duraservice', & 'duraboss' for
 # external requests
 ###

 RewriteCond %{REQUEST_URI} ^(/durastore|/duraservice|/duraboss)
 RewriteCond %{SERVER_PORT} !^443$
 RewriteCond %{SERVER_NAME} !^localhost$
 RewriteCond %{SERVER_NAME} !^127.0.0.1$
 RewriteCond %{REMOTE_HOST} !^127.0.0.1$
 RewriteCond ${local-ip-map:%{REMOTE_HOST}} !^localhost$
 RewriteRule ^(.*)$ https://%{SERVER_NAME}$1 [R=301,L]

Application Security Implementation

The basic AuthN flow is as follows

User requests secured resource
If credentials not in request

response 401
Spring AuthenticationProvider performs AuthN

AuthProvider asks UserDetailsService for GrantedAuthorities for given Principal
notes

DuraCloud provides custom UserDetailsService implementation to return UserDetails of
requesting Principal
AbstractSecurityInterceptor permanently caches user AuthN decisions by default

Authentication object and "configuration attributes" are passed to AccessDecisionManager for AuthZ

Security Servlet Filters

DuraCloud leverages Spring's mechanism for wiring AuthN/Z into an application across servlet url patterns.
The following access rules are placed across the durastore and duraservice REST-APIs:

Initialization REST Methods - Common across all applications

Action Role

Is Initialized ROLE_ANONYMOUS

Initialize ROLE_ROOT

Initialize Security Users ROLE_ROOT

DuraStore REST Methods

Action Role

Get Stores ROLE_USER

Get Spaces ROLE_ANONYMOUS if space ACL allows public
read, else ROLE_USER

Get Space ROLE_ANONYMOUS if space ACL allows public
read, else ROLE_USER

Get Space Properties ROLE_ANONYMOUS if space ACL allows public
read, else ROLE_USER

Get Space ACLs ROLE_ANONYMOUS if space ACL allows public
read, else ROLE_USER

Create Space ROLE_ADMIN

Set Space Properties ROLE_USER

Set Space ACLs ROLE_ADMIN

Delete Space ROLE_ADMIN

Get Content ROLE_ANONYMOUS if space ACL allows public
read, else ROLE_USER

Get Content Properties ROLE_ANONYMOUS if space ACL allows public
read, else ROLE_USER

Store Content ROLE_USER

Copy Content ROLE_USER

Set Content Properties ROLE_USER

Delete Content ROLE_USER

Get Tasks ROLE_ADMIN

Perform Task ROLE_ADMIN

Perform Task (restore-content) ROLE_ROOT

DuraService REST Methods

Action Role

Get Services ROLE_USER

Get Service ROLE_USER

Get Deployed Service ROLE_USER

Get Deployed Service Properties ROLE_USER

Deploy Service ROLE_ADMIN

Update Service Configuration ROLE_ADMIN

UnDeploy Service ROLE_ADMIN

DuraBoss REST Methods

Action Role

Get Latest Storage Report ROLE_ADMIN

Get Storage Report List ROLE_ADMIN

Get Storage Report ROLE_ADMIN

Get Storage Report Info ROLE_ADMIN

Start Storage Report ROLE_ROOT

Cancel Storage Report ROLE_ROOT

Schedule Storage Report ROLE_ROOT

Cancel Storage Report Schedule ROLE_ROOT

Get Deployed Services Report ROLE_ADMIN

Get Completed Services Report ROLE_ADMIN

Get Completed Services Report List ROLE_ADMIN

Get Services Report ROLE_ADMIN

Get Executor Status ROLE_ADMIN

Get Supported Executor Actions ROLE_ADMIN

Perform an Executor Action ROLE_ROOT

Shutdown Executor ROLE_ROOT

Create Initial Audit Log ROLE_ROOT

Get Audit Logs ROLE_ADMIN

Shutdown Auditor ROLE_ROOT

Get Content Manifest ROLE_ADMIN

Roles

1.

2.

3.

4.

1.
2.

The fixed set of users/roles listed below are provided in DuraCloud. Each role in the list below represents a super
set of the privileges of those above it.

ROLE_ANONYMOUS
no username/password

ROLE_USER
user created by DuraCloud-account admin

ROLE_ADMIN
administrator of DuraCloud-account

ROLE_ROOT
DuraSpace personnel

User Management and Access Control
Users are managed via the . In the Management Console, an accountDuraCloud Management Console
administrator has the ability to:

Add and remove users to the DuraCloud account
Create Groups and add users to groups in order to simplify access control

Access Control is managed at the space level
Within DuraCloud (via the UI or the REST API), an account administrator has the ability to define
which users and groups have access to a space, as well as the type of access (read or write) that is
available.

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Management+Console

	DuraCloud Release 2.3
	DuraCloud Chunker Tool
	Logging Configuration
	DuraCloud REST API
	REST API Examples Using curl

	Release Notes
	DuraCloud Sync Tool
	DuraCloud Sync Tool - Command Line
	DuraCloud Sync Tool - Graphical UI

	DuraCloud Java Clients
	DuraCloud Administration
	DuraCloud Services
	DuraCloud Features
	DuraCloud Retrieval Tool
	DuraCloud Stitcher Tool
	DuraCloud Upload Tool
	Upload Tool Help

	Known Issues
	Deploying DuraCloud from Binaries
	Service Development Guide
	Building DuraCloud Software from Source
	DuraCloud Storage
	DuraCloud Security

