
1. DuraCloud Release 1.0 . 2
1.1 DuraCloud Chunker Tool . 2
1.2 Logging Configuration . 3
1.3 DuraCloud REST API . 4

1.3.1 REST API Examples Using curl . 16
1.4 Release Notes . 19
1.5 DuraCloud Sync Tool . 22
1.6 DuraCloud Java Clients . 25
1.7 DuraCloud Administration . 25
1.8 DuraCloud Services . 26
1.9 Building DuraCloud Software from Source . 30
1.10 DuraCloud Features . 34
1.11 DuraCloud Security . 35
1.12 Service Development Guide . 39
1.13 DuraCloud Retrieval Tool . 40
1.14 Known Issues . 41

DuraCloud Release 1.0
User Documentation

Release Notes
Known Issues
DuraCloud Features
DuraCloud Services
DuraCloud REST API
DuraCloud Security
DuraCloud Java Clients
DuraCloud Sync Tool
DuraCloud Retrieval Tool
DuraCloud Chunker Tool
DuraCloud Administration

Developer Documentation

Building DuraCloud from Source
Service Development Guide
Logging Configuration

DuraCloud Chunker Tool

Introduction

The Chunker Tool is a utility which was created in order to provide a simple way to copy files from a local file system to DuraCloud in a "one-off"
manner. Actually, although the common case is to use this tool to copy one or more files to DuraCloud, it may also be run to copy files to another
location on the local file system.

Download

Download the Chunker Tool from the Downloads page.

Operational notes

If you want to jump directly into using the tool, download it from the link above and run the following command

java -jar chunk-{version}-driver.jar

The resulting usage statement (detailed below) should be enough to help you get started.

The Chunker Tool allows you to copy multiple local files and directories into a single space within DuraCloud. The names of the objects
which are added to DuraCloud will contain all of the directory elements in the path starting from the first element below the base directory
down to the individual file names.

Using the Chunker Tool

To run the Chunker Tool, open a terminal or command prompt and navigate to the directory where the Chunker Tool is located and run
the above command.
The following options are available when running the Chunker Tool

Short
Option

Long Option Arguments Description

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

-a --add <f t s> add content from directory:<f> to space or directory:<t> of maximum chunk size:<s>,
where the chunk size must have a unit suffix of K,M, or G
—
If the -c option is provided, the destination space <t> will be interpreted as the name
of a space in the DuraCloud account found at the host:port provided in the -c option,
otherwise the destination space will be interpreted as a directory on the local file
system.

-c --cloud-store <host:port> use cloud store found at <host>:<port> as content destination

-d --dir-filter <l> limit processed directories to those listed in file-list:<l>
—
If the -d option is not used, all directories under the base source directory provided in
the -a option will be included. The file specified by this option is expected to contain a
list of directory names each on there own line. The list is converted to an OrFileFilter
from Apache Commons IO

-f --file-filter <l> limit processed files to those listed in file-list:<l>
–
The file specified by this option is expected to contain a list of file names each on
there own line. The list is converted to an OrFileFilter from Apache Commons IO

-g --generate <outFile
numBytes>

generate test data to <outFile> of <size> bytes
—
This option does not copy any files, it only generates test data files of the size
specified in the give argument.

-i --ignore-large-files no args if this option is set, files over the chunk size specified in the 'add' option will be
ignored.

-p --password <password> password of duracloud instance

-u --username <username> username of duracloud instance

-x --exclude-chunk-md5s no args if this option is set, chunk MD5s will NOT be preserved in the manifest
—
It is expected that this option is rarely used, but in certain situations where the MD5s
of the segments of a file that needed to be chunked because the parent file was
larger than the limit set in the -a option, not generating these MD5s improves
performance.

Creating your own Chunks

If you are interested in creating chunked files in DuraCloud using your own tools, you may do so by adhering to the XML schema used by
DuraCloud to create chunks.

Download the Chunker XSD from the Downloads page

Logging Configuration

Introduction

The logging framework used in the DuraCloud application is with the implementation statically bound at runtime. SLF4J LogBack
See the website for a detailed description of the configuration options.LogBack

The application also contains bridges for both Log4J and Commons-Logging which translates any underlying, dependency libraries which are
configured to write to these frameworks into the SLF4J API. The effect is that all logging is channeled through the SLF4J configuration.

General Usage

By default, if no configuration file is found by LogBack, the logging level is set to "DEBUG" and the appender is set to "STDOUT"
When starting any DuraCloud application, a LogBack configuration file may be specified by using the following system variable

java -Dlogback.configurationFile={path-to-logging-configuration-file} -jar any-application

Additionally, LogBack will use the file named "logback.xml" found at the top of the classpath for configuration
An example logback.xml file can be found on the Downloads page

http://commons.apache.org/io/api-release/index.html
http://commons.apache.org/io/api-release/index.html
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads
http://http://www.slf4j.org/docs.html
http://http://logback.qos.ch/manual/configuration.html
http://http://logback.qos.ch/manual/configuration.html
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

1<?xml version="1.0" encoding="UTF-8"?>
2
3<configuration >
4 <!--<configuration debug="true" scan="true">-->
5 <jmxConfigurator/>
6 <property name="LOG_FILENAME" value="/home/duraspace/logs/duracloud-osgi.log" />
7
8 <appender name="DURACLOUD" class="ch.qos.logback.core.rolling.RollingFileAppender">
9 <File>${LOG_FILENAME}</File>
10 <encoder>
11 <pattern>%-14p %d{yyyy/MM/dd HH:mm:ss} [%t] (%F:%L\\) [%M(\\)] - %m%n</pattern>
12 </encoder>
13 <rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
14 <maxIndex>5</maxIndex>
15 <FileNamePattern>${LOG_FILENAME}.%i</FileNamePattern>
16 </rollingPolicy>
17 <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
18 <MaxFileSize>20MB</MaxFileSize>
19 </triggeringPolicy>
20 </appender>
21 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
22 <encoder>
23 <pattern>%-14p %d{yyyy/MM/dd HH:mm:ss} [%t] (%F:%L\\) [%M(\\)] - %m%n</pattern>
24 </encoder>
25 </appender>
26 <logger name="org.duracloud" level="DEBUG" additivity="false">
27 <appender-ref ref="DURACLOUD"/>
28 </logger>
29 <root level="WARN">
30 <appender-ref ref="STDOUT"/>
31 </root>
32</configuration>

Notes on the above logback.xml file
on line 4, the attribute "debug" applies to displaying configuration information when LogBack starts up if set to "true"
on line 4, the attribute "scan" configures LogBack to re-read the given logback.xml every 60 seconds (by default) for updates
on line 26, the attribute "additivity" configures the given logger to inherit the configuration of the parent logger, in this case, the
root logger
on line 26, if the "additivity" attribute were set to "true", all "DURACLOUD" log output would also log to "STDOUT"

DuraCloud REST API
DuraCloud REST API methods:

Notes
All Applications

Initialize Security Users
DuraStore

Initialize Stores
Get Stores
Get Spaces
Get Space
Get Space Metadata
Create Space
Set Space Metadata
Delete Space
Get Content
Get Content Metadata
Store Content
Set Content Metadata
Delete Content
Get Tasks
Perform Task

Tasks
DuraService

Initialize Services
Get Services

Get Service
Get Deployed Service
Get Deployed Service Properties
Deploy Service
Update Service Configuration
UnDeploy Service

DurAdmin
Initialize Application

DuraReport
Initialize Application
Get Latest Storage Report
Get Storage Report List
Get Storage Report
Get Storage Report Info
Start Storage Report
Cancel Storage Report
Schedule Storage Report
Cancel Storage Report Schedule
Get Deployed Services Report
Get Completed Services Report
Get Completed Services Report List
Get Services Report

Notes

Each of the methods below has specific security requirements. See DuraCloud Security for more information

Due to which does not properly handle requests redirected from http to https, it is recommended that all REST APIan issue
requests use https directly.

Examples calling the API defined below with the Unix utility "curl" can be found here

All Applications

https://jira.duraspace.org/browse/DURACLOUD-255

Security Initialization REST Methods

Initialize Security Users

Purpose: Allows the initialization of authorized users
Request:

POST https://host:port/durastore/security
POST https://host:port/duraservice/security
POST https://host:port/duradmin/security
POST https://host:port/durareport/security

Request Body: XML similar to:

<?xml version="1.0" encoding="UTF-8"?>
<dur:security-users schemaVersion="0.2" xmlns:dur="duracloud.org">
 <security-user>
 <username>username-0</username>
 <password>password-0</password>
 <enabled>true</enabled>
 <accountNonExpired>true</accountNonExpired>
 <credentialsNonExpired>true</credentialsNonExpired>
 <accountNonLocked>true</accountNonLocked>
 <grantedAuthorities>ROLE_USER</grantedAuthorities>
 </security-user>
 <security-user>
 <username>username-1</username>
 <password>password-1</password>
 <enabled>false</enabled>
 <accountNonExpired>false</accountNonExpired>
 <credentialsNonExpired>false</credentialsNonExpired>
 <accountNonLocked>false</accountNonLocked>
 <grantedAuthorities>ROLE_USER ROLE_ADMIN</grantedAuthorities>
 </security-user>
</dur:security-users>

Response Code: 200 (on success)
Response Body: "Initialization Successful" (on success)

DuraStore

Purpose: DuraStore is the application through which DuraCloud manages storage. The DuraStore REST API provides access to storage by
mediating the underlying storage provider APIs to allow access to multiple cloud storage options through a single API.

Initialization REST Methods

Initialize Stores

Purpose: Allows the initialization of storage provider accounts
Request: POST https://host:port/durastore/stores
Request Body: XML similar to:

<storageProviderAccounts>
 <storageAcct ownerId='0' isPrimary='true'>
 <id>1</id>
 <storageProviderType>AMAZON_S3</storageProviderType>
 <storageProviderCredential>
 <username>username</username>
 <password>password</password>
 </storageProviderCredential>
 </storageAcct>
</storageProviderAccounts>

Response Code: 200 (on success)
Response Body: "Initialization Successful" (on success)

https://host:port/durastore/security
https://host:port/duraservice/security
https://host:port/duradmin/security
https://host:port/durareport/security
https://host:port/durastore/stores

Store REST Methods

Get Stores

Purpose: Provides a listing of available storage providers accounts (without credentials)
Request: GET https://host:port/durastore/stores
Parameters: None
Response Code: 200 (on success)
Response Body: XML similar to:

<storageProviderAccounts>
 <storageAcct isPrimary='true'>
 <id>1</id>
 <storageProviderType>AMAZON_S3</storageProviderType>
 </storageAcct>
 <storageAcct isPrimary="false">
 <id>2</id>
 <storageProviderType>RACKSPACE</storageProviderType>
 </storageAcct>
</storageProviderAccounts>

Space REST Methods

Get Spaces

Purpose: Provides a listing of all of the spaces that a customer has created
Request: GET ? (storeID)https://host:port/durastore/spaces
Response Code: 200 (on success)
Response Body: XML similar to:

<spaces>
 <space id="space1" />
 <space id="space2" />
</spaces>

Get Space

Purpose: Provides a listing of the contents of a space along with space metadata
Request: GET ? (storeID) (prefix) (maxResults) (marker)https://host:port/durastore/spaceID

storeID (optional) - ID of the content storage provider to query (default is primary store)
prefix (optional) - Only retrieve content ids with this prefix (default is all content ids)
maxResults (optional) - The maximum number of content IDs to return in the list (default is 1000)

: the maximum allowable value for maxResults is 1000. Any larger value will be reduced to 1000.note
marker (optional) - The content ID marking the last item in the previous set (default is the first set of ids)

Response Code: 200 (on success)
Response Body: XML similar to:

<space id="space1">
 <item>Image 1</item>
 <item>Image 2</item>
</space>

Response Headers: All available space metadata, example:

x-dura-meta-space-count: 65
 x-dura-meta-space-access: OPEN
 x-dura-meta-space-created: Mon, 01 Jan 2000 08:00:00 EST
 x-dura-meta-custom-metadata: Custom Metadata Value

Get Space Metadata

https://host:port/durastore/stores
https://host:port/durastore/spaces
https://host:port/durastore/spaceID

Purpose: Provides all space metadata
Request: HEAD ? (storeID)https://host:port/durastore/spaceID
Response Code: 200 (on success)
Response Headers: Same as for Get space (above)

Create Space

Purpose: Creates a new space
Request: PUT ? (storeID)https://host:port/durastore/spaceID
Request Headers: Metadata about the space, example:

x-dura-meta-space-access: OPEN
 x-dura-meta-custom-metadata: Custom Metadata Value

Response Code: 201 (on success)
Response Headers: Location of the new space (i.e. the URL used to create the space), example:

Location: https://myhost:8080/durastore/space1

Set Space Metadata

Purpose: Updates the metadata associated with a space
Request: POST ? (storeID)https://host:port/durastore/spaceID
Request Headers: Same as Create space (above)
Response Code: 200 (on success)
Response Body: "Space $spaceID updated successfully" (on success)

Delete Space

Purpose: Deletes a space
Request: DELETE ? (storeID)https://host:port/durastore/spaceID
Response Code: 200 (on success)
Response Body: "Space $spaceID deleted successfully" (on success)

https://host:port/durastore/spaceID
https://host:port/durastore/spaceID
https://host:port/durastore/spaceID
https://host:port/durastore/spaceID

Content REST Methods

Get Content

Purpose: Retrieves a piece of content along with its metadata
Request: GET ? (storeID) (attachment)https://host:port/durastore/spaceID/contentID

if attachment param value is true, a Content-Disposition header is included with the response
Response Code: 200 (on success)
Response Body: The content stream
Response Headers: All available content metadata, example:

Content-Type: text/plain
 Content-Length: 5732
 Content-MD5: 3456709234785097473839202
 ETag: 3456709234785097473839202
 x-dura-meta-content-name: Testing Content
 x-dura-meta-content-owner: JSmith

Get Content Metadata

Purpose: Retrieves the metadata of a piece of content without the content itself
Request: HEAD ? (storeID)https://host:port/durastore/spaceID/contentID
Response Code: 200 (on success)
Response Headers: Same as Get content (above)

Store Content

Purpose: Adds a piece of content to the store
Request: PUT ? (storeID)https://host:port/durastore/spaceID/contentID
Request Body: Content to be added
Request Headers: Metadata about the content, example:

Content-Type: text/plain
 Content-MD5: 4cd56e137a93a1accb43c5d32f4afffb
 x-dura-meta-content-name: Testing Content
 x-dura-meta-content-owner: JSmith

Note that when the optional Content-MD5 header is included, the final checksum of the stored file is compared
against the MD5 value included in the header to ensure that the file was stored correctly. If the header is not
included, an MD5 checksum is computed as the file is transferred to storage, and that value is used in the final
comparison.

Response Code: 201 (on success)
Response Headers: Location of the new content (i.e. the URL used to create the content), example:

Location: https://myhost:8080/durastore/space1/content1

Set Content Metadata

Purpose: Updates the metadata associated with a piece of content
Request: POST ? (storeID)https://host:port/durastore/spaceID/contentID
Request Headers: Same as Store content (above)
Response Code: 200 (on success)
Response Body: "Content $contentID updated successfully"

Delete Content

Purpose: Removes a piece of content from the store
Request: DELETE ? (storeID)https://host:port/durastore/spaceID/contentID
Response Code: 200 (on success)
Response Body: "Content $contentID deleted successfully"

Task REST Methods

https://host:port/durastore/spaceID/contentID
https://host:port/durastore/spaceID/contentID
https://host:port/durastore/spaceID/contentID
https://host:port/durastore/spaceID/contentID
https://host:port/durastore/spaceID/contentID

Tasks are used to perform storage provider actions which cannot be performed in a generic manner across
multiple providers.

Get Tasks

Purpose: Provides a listing of all of the supported tasks for a given provider. Note that if no storeID parameter is included,
the task listing is provided for the primary storage provider.
Request: GET ? (storeID)https://host:port/durastore/task
Response Code: 200 (on success)
Response Body: XML similar to:

<list>
 <string>task1</string>
 <string>task2</string>
</list>

Perform Task

Purpose: Performs a particular task. Note that most tasks can be performed by only one storage provider type.
Request: POST ? (storeID)https://host:port/durastore/task/taskName
Request Body: Parameters for task. Each task will expect parameters in a specific format, see task listing for more details.
Response Code: 200 (on success)
Response Body: Response value for task, format varies by task.

Tasks

https://host:port/durastore/task
https://host:port/durastore/task/taskName

taskName Storage
Provider

Name Description Request Body Response
Body

enable-streaming Amazon
S3

Enable
Streaming
task

Enables RTMP streaming for all files within a
DuraCloud space through the use of Amazon's
Cloudfront streaming capability. This task may
take up to 15 minutes to complete.

Name of the
space for which
streaming is to
be enabled

Text
indicating
the results
of the task,
including
the
streaming
host

disable-streaming Amazon
S3

Disable
Streaming
task

Disables streaming by removing the ability for
Cloudfront to access files within a space. This
does not remove the streaming distribution, only
disables its use, so enabling streaming on the
same space again can be performed much more
quickly. Some content in the space may continue
to be available for streaming up to 24 hours after
streaming has been disabled.

Name of the
space for which
streaming is to
be disabled

Text
indicating
the results
of the task

delete-streaming Amazon
S3

Delete
Streaming
task

Removes a streaming distribution created by the
enable-streaming task. This task should be
performed after performing the disable-streaming
task. This task may take up to 15 minutes to
complete, after which no content in the space will
be available for streaming.

Name of the
space for which
streaming is to
be deleted

Text
indicating
the results
of the task

run-hadoop-job Amazon
S3

Run
Hadoop
Job task

Runs a hadoop job using Amazon's Elastic Map
Reduce feature. A JAR which implements the
hadoop interfaces is expected to have already
been loaded into S3. This JAR is used to execute
the hadoop job.

A map
serialized into
XML which
includes, at a
minimum,
values for
jarContentId,
sourceSpaceId,
destSpaceId,
and
workSpaceId.

A map
serialized
into XML
which
includes
the
jobFlowId

describe-hadoop-job Amazon
S3

Describe
Hadoop
Job task

Retrieves information about a hadoop job running
in Amazon's Elastic Map Reduce

The Job Flow ID A map
serialized
into XML
which
includes
information
about the
running job

stop-hadoop-job Amazon
S3

Stop
Hadoop
Job task

Stops a hadoop job running in Amazon's Elastic
Map Reduce

The Job Flow ID A map
serialized
into XML
which
includes a
results key
with a
value of
either
success or
failure

noop Amazon
S3

Test task Provides a simple way to test the calling of tasks Body content is
ignored

Text
indicating
successful
task
completion

DuraService

Purpose: DuraService is the application through which DuraCloud manages services. The DuraService REST API provides the means by which
services available in the DuraCloud service repository are deployed, configured, and undeployed.

Resources: XML schema which define the service configuration can be found on the Downloads page

Initialization REST Methods

Initialize Services

Purpose: Initializes the DuraService application
Request: POST https://host:port/duraservice/services
Request Body: XML similar to:

<servicesConfig>
 <primaryServiceInstance>
 <host>[PRIMARY-SERVICE-INSTANCE-HOST]</host>
 <servicesAdminPort>[PRIMARY-SERVICES-ADMIN-PORT]</servicesAdminPort>
 <servicesAdminContext>[PRIMARY-SERVICES-ADMIN-CONTEXT]</servicesAdminContext>
 </primaryServiceInstance>
 <userStorage>
 <host>[USER-STORAGE-HOST-NAME]</host>
 <port>[USER-STORAGE-PORT]</port>
 <context>[USER-STORAGE-CONTEXT]</context>
 <msgBrokerUrl>[USER-STORAGE-MSG-BROKER-URL]</msgBrokerUrl>
 </userStorage>
 <serviceStorage>
 <host>[SERVICES-STORAGE-HOST-NAME]</host>
 <port>[SERVICES-STORAGE-PORT]</port>
 <context>[SERVICES-STORAGE-CONTEXT]</context>
 <spaceId>[SERVICES-STORAGE-SPACE-ID]</spaceId>
 </serviceStorage>
 <serviceCompute>
 <type>AMAZON_EC2</type>
 <imageId>[MACHINE-IMAGE-ID]</imageId>
 <computeProviderCredential>
 <username>[USERNAME]</username>
 <password>[PASSWORD]</password>
 </computeProviderCredential>
 </serviceCompute>
 </servicesConfig>

Response Code: 200 (on success)
Response Body: "Initialization Successful" (on success)

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads
https://host:port/duraservice/services

1.
2.

Service REST Methods

Get Services

Purpose: Retrieves a listing of services, along with their configuration options
Request: GET ? (show)https://host:port/duraservice/services

Parameter options for show (optional)
available (default) - Includes only services which have not been deployed but are available for deployment
deployed - Includes only services which have been deployed and started

Response Code: 200 (on success)
Response Body: XML list of services (see service config xsd)

Get Service

Purpose: Retrieves information about a particular service including description, configuration options, and all deployments
Request: GET https://host:port/duraservice/serviceID
Response Code: 200 (on success)
Response Body: XML service (see service config xsd)

Get Deployed Service

Purpose: Retrieves information about a deployed service including description, configuration options, and a single
deployment indicating the configuration options in use
Request: GET https://host:port/duraservice/serviceID/deploymentID
Response Code: 200 (on success)
Response Body: XML service (see service config xsd)

Get Deployed Service Properties

Purpose: Retrieves the runtime properties of a deployed service
Request: GET https://host:port/duraservice/serviceID/deploymentID/properties
Response Code: 200 (on success)
Response Body: XML service (simple xml Map serialization)

Deploy Service

Purpose: Deploys and starts an available service
Request: PUT ? (serviceHost)https://host:port/duraservice/serviceID

Parameter value for serviceHost (optional) should indicate the services host on which the service should be
deployed. Default is the primary customer host.

Request Body: XML user configuration indicating the config selections for the service (see user config portion of service
config xsd)
Response Code: 201 (on success)
Response Header: Location header indicates the URL at which information about the deployed service can be retrieved
(the URL for a get deployed service call) which includes the deploymentID

Update Service Configuration

Purpose: Updates the configuration of a deployed service
Request: POST https://host:port/duraservice/serviceID/deploymentID
Request Body: Updated XML user configuration indicating the config selections for the service (see user config portion of
service config xsd)
Response Code: 200 (on success)

UnDeploy Service

Purpose: Stops and Undeploys a deployed service
Request: DELETE https://host:port/duraservice/serviceID/deploymentID
Response Code: 200 (on success)

DurAdmin

Purpose: DurAdmin is the user-facing application through which DuraCloud exposes DuraStore and DuraService functionality. The DurAdmin
REST API provides the means by which DurAdmin is initialized.

https://host:port/duraservice/services
https://host:port/duraservice/serviceID
https://host:port/duraservice/serviceID/deploymentID
https://host:port/duraservice/serviceID/deploymentID/properties
https://host:port/duraservice/serviceID
https://host:port/duraservice/serviceID/deploymentID
https://host:port/duraservice/serviceID/deploymentID

Initialization REST Methods

Initialize Application

Purpose: Allows the initialization of duradmin
Request: POST https://host:port/duradmin/init
Request Body: XML similar to:

<duradminConfig>
 <durastoreHost>[host]</durastoreHost>
 <durastorePort>[port]</durastorePort>
 <durastoreContext>durastore</durastoreContext>
 <duraserviceHost>[host]</duraserviceHost>
 <duraservicePort>[port]</duraservicePort>
 <duraserviceContext>duraservice</duraserviceContext>
</duradminConfig>

Response Code: 200 (on success)
Response Body: "Initialization Successful" (on success)

DuraReport

Purpose: DuraReport generates reports relating to the status of your DuraCloud instance, and provides a simple interface for accessing those
reports.

Resources: XML schema which defines the expected transfer data for storage and service reporting can be found on the Downloads page

Initialization REST Methods

Initialize Application

Purpose: Allows the initialization of durareport
Request: POST https://host:port/durareport/reports
Request Body: XML similar to:

<durareportConfig>
 <durastoreHost>[host]</durastoreHost>
 <durastorePort>[port]</durastorePort>
 <durastoreContext>durastore</durastoreContext>
 <duraserviceHost>[host]</duraserviceHost>
 <duraservicePort>[port]</duraservicePort>
 <duraserviceContext>duraservice</duraserviceContext>
</durareportConfig>

Response Code: 200 (on success)
Response Body: "Initialization Successful" (on success)

https://host:port/duradmin/init
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads
https://host:port/durareport/reports

Storage Report REST Methods

Get Latest Storage Report

Purpose: Provides the most current storage report in XML format
Request: GET https://host:port/durareport/storagereport
Response Code: 200 (on success)
Response Body: XML, defined by the storage report XSD

Get Storage Report List

Purpose: Provides a list of all storage report IDs
Request: GET https://host:port/durareport/storagereport/list
Response Code: 200 (on success)
Response Body: XML, defined by the storage report XSD

Get Storage Report

Purpose: Provides a specific storage report based on the provided report ID
Request: GET https://host:port/durareport/storagereport/reportID
Response Code: 200 (on success)
Response Body: XML, defined by the storage report XSD

Get Storage Report Info

Purpose: Provides a information about the current status of the storage reporting system
Request: GET https://host:port/durareport/storagereport/info
Response Code: 200 (on success)
Response Body: XML, defined by the storage report XSD

Start Storage Report

Purpose: Starts a storage report if one is not already running
Request: POST https://host:port/durareport/storagereport
Response Code: 200 (on success)
Response Body: "Report Started" (on success), or ""Report Already In Progress" (if a report is already in progress)

Cancel Storage Report

Purpose: Cancels a running storage report
Request: DELETE https://host:port/durareport/storagereport
Response Code: 200 (on success)
Response Body: "Storage report cancelled"

Schedule Storage Report

Purpose: Schedules a time for a storage report to be run
Request: POST ? (startTime) (frequency)https://host:port/durareport/storagereport/schedule

startTime: time (in milliseconds since the epoch) to begin the next storage report
frequency: time (in milliseconds) to wait between running reports (minimum value is 600000)

Response Code: 200 (on success)
Response Body: "Storage reports scheduled" (on success)

Cancel Storage Report Schedule

Purpose: Cancels all entries on the storage report schedule
Request: DELETE https://host:port/durareport/storagereport/schedule
Response Code: 200 (on success)
Response Body: "Storage Reports schedule cancelled"

https://host:port/durareport/storagereport
https://host:port/durareport/storagereport/list
https://host:port/durareport/storagereport/reportID
https://host:port/durareport/storagereport/info
https://host:port/durareport/storagereport
https://host:port/durareport/storagereport
https://host:port/durareport/storagereport/schedule
https://host:port/durareport/storagereport/schedule

Service Report REST Methods

Get Deployed Services Report

Purpose: Provides a listing of the services which are currently deployed
Request: GET https://host:port/durareport/storagereport/deployed
Response Code: 200 (on success)
Response Body: XML, defined by the service report XSDs

Get Completed Services Report

Purpose: Provides a listing of the most recent completed services
Request: GET ? (limit)https://host:port/durareport/servicereport

Parameter value for limit (optional) should indicate the maximum number of services to return in the report (default
is 20, max is 1000)

Response Code: 200 (on success)
Response Body: XML, defined by the service report XSDs

Get Completed Services Report List

Purpose: Provides a listing of all service report IDs
Request: GET https://host:port/durareport/servicereport/list
Response Code: 200 (on success)
Response Body: XML, defined by the service report XSDs

Get Services Report

Purpose: Provides a specific services report based on the provided report ID
Request: GET https://host:port/durareport/servicereport/reportID
Response Code: 200 (on success)
Response Body: XML, defined by the service report XSDs

REST API Examples Using curl

Convenience Variables
DuraStore Notes
DuraStore

Get Stores
Get Spaces
Create Space
Store Content
Get Space
Set Space Metadata
Get Space Metadata
Get Content
Set Content Metadata
Get Content Metadata
Delete Content
Delete Space

DuraService Notes
DuraService

Get Services
Deploy Service
Get Service
Get Deployed Service
Get Deployed Service Properties
Update Service Configuration
UnDeploy Service

Convenience Variables

The curl commands below can be used directly if you define the following variables in your shell

https://host:port/durareport/storagereport/deployed
https://host:port/durareport/servicereport
https://host:port/durareport/servicereport/list
https://host:port/durareport/servicereport/reportID

host=<duracloud-hostname>
space-0=<any-name>
space-1=<any-name>
user=<username>
pword=<password>
file=<any-file-name>

DuraStore Notes

The curl commands in the DuraStore section expect a test file for uploads.

echo hello > ${file}

Note that if the target of a content or space retrieval (GET) has access permissions set to "OPEN", then the "-u" option in the curl commands is
not required.

DuraStore

Get Stores

curl -u ${user}:${pword} https://${host}/durastore/stores

Get Spaces

curl -u ${user}:${pword} https://${host}/durastore/spaces
curl -u ${user}:${pword} https://${host}/durastore/spaces?storeID=1

Create Space

curl -u ${user}:${pword} -X PUT https://${host}/durastore/${space-0}
curl -u ${user}:${pword} -H "x-dura-meta-city: arlington" -H "x-dura-meta-state: va" -X PUT
https://${host}/durastore/${space-1}?storeID=1

Store Content

curl -u ${user}:${pword} -T ${file} https://${host}/durastore/${space-0}/test.txt
curl -u ${user}:${pword} -T ${file} https://${host}/durastore/${space-0}/item.txt

Get Space

curl -u ${user}:${pword} https://${host}/durastore/${space-0}
curl -u ${user}:${pword} https://${host}/durastore/${space-1}?storeID=1
curl -u ${user}:${pword} https://${host}/durastore/${space-0}?prefix=test

Set Space Metadata

curl -u ${user}:${pword} -H "x-dura-meta-country: usa" -X POST https://${host}/durastore/${space-0}

Get Space Metadata

curl -u ${user}:${pword} -I https://${host}/durastore/${space-0}
curl -u ${user}:${pword} -I https://${host}/durastore/${space-1}?storeID=1

1.
2.

Get Content

curl -u ${user}:${pword} https://${host}/durastore/${space-0}/test.txt
curl -u ${user}:${pword} https://${host}/durastore/${space-0}/test.txt?storeID=0\&attachment=true

Set Content Metadata

curl -u ${user}:${pword} -X POST -H "x-dura-meta-color: green"
https://${host}/durastore/${space-0}/test.txt

Get Content Metadata

curl -u ${user}:${pword} -I https://${host}/durastore/${space-0}/test.txt

Delete Content

curl -u ${user}:${pword} -X DELETE https://${host}/durastore/${space-0}/test.txt

Delete Space

curl -u ${user}:${pword} -X DELETE https://${host}/durastore/${space-0}
curl -u ${user}:${pword} -X DELETE https://${host}/durastore/${space-1}?storeID=1

DuraService Notes

The commands in the DuraService section below demonstrate the deployment, inspection, reconfiguration, and undeployment of a service.
As of release 0.8.0, the Bit Integrity Checker has service id of '0' (noted in variable below).
The actual deployment id is dynamically generated based on the number of previous deployments within a given DuraCloud application.
After deploying the service, use the "Get Deployed Service" call to determine the specific of your deployed service.deployment id

bitintegrity=0
deployment=<determined-by-inspection>

The following two service configuration files are provided for deployment and reconfiguration of the Bit Integrity Checker.
They are based on the spaces that were created in the DuraStore section, but can be modified to indicate other configuration options or to
execute over alternate spaces.

configuration file 0
configuration file 1

DuraService

Get Services

curl -u ${user}:${pword} https://${host}/duraservice/services
curl -u ${user}:${pword} https://${host}/duraservice/services?show=deployed

Deploy Service

curl -u ${user}:${pword} -X PUT -T deploy.xml https://${host}/duraservice/${bitintegrity}

Get Service

curl -u ${user}:${pword} https://${host}/duraservice/${bitintegrity}

https://wiki.duraspace.org/download/attachments/30213843/deploy.xml?version=1&modificationDate=1296137372362
https://wiki.duraspace.org/download/attachments/30213843/deploy-new.xml?version=1&modificationDate=1296137372367

Get Deployed Service

curl -u ${user}:${pword} https://${host}/duraservice/${bitintegrity}/${deployment}

Get Deployed Service Properties

curl -u ${user}:${pword} https://${host}/duraservice/${bitintegrity}/${deployment}/properties

Update Service Configuration

curl -u ${user}:${pword} -X PUT -T deploy-new.xml https://${host}/duraservice/${bitintegrity}

UnDeploy Service

curl -u ${user}:${pword} -X DELETE https://${host}/duraservice/${bitintegrity}/${deployment}

Release Notes

Release 1.0

Released: July 29, 2011

The primary features of release 1.0 are:

Storage Reporting
A new feature which provides detailed information about the amount of data you have stored in DuraCloud, as well as the kinds
of data you have stored in DuraCloud. Reports are generated automatically and the information can be viewed using the
DuraCloud dashboard or downloaded for processing using new REST API methods.

Service Reporting
A new feature which provides detailed information about services which are currently running and which have run previously in
your DuraCloud account. Reports are generated automatically as services are run and the information can be viewed using the
DuraCloud dashboard or downloaded for processing using new REST API methods.

Service Dependencies
Any service can now define a dependency on another service.
"System" services, which need to be installed prior to other services being deployed, are now installed on-the-fly only when
needed.

Improved service feedback
The information provided by running services is now more complete and more consistent with other DuraCloud services.

Improved character set support
Content IDs can now consist of any characters which can be properly encoded using UTF-8 (with the exception of "reserved"
characters mentioned)here

Image Viewer URL stability
The URLs for images made available by the Image Server service will now stay consistent across restarts of the service and
restarts of the DuraCloud instance.

For more details about specific changes in release 1.0, see the .JIRA issue tracker

Release 0.9

Released: April 27, 2011

The primary features of release 0.9 are:

The Duplicate on Ingest service is now the Duplicate on Change service.
This service now supports all of the same on-ingest features as before, but it now also performs duplication of all update and
delete actions as well. This allows the primary and secondary cloud stores to be kept completely in sync.

The Bulk Bit Integrity Service has been improved.
This service has been updated and verified to properly handle spaces with up to 1 million items
The second step of the MD5 verification, which used to run locally on the instance, has been moved to hadoop, allowing the
service to complete much more quickly for large data sets.

User management functions have been removed, as they are now performed by the .DuraCloud Management Console

https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10262
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Management+Console

As a convenience, administrators are still able to see the list of users and their roles within the DuraCloud Administrator UI.
Service outputs have been made more consistent.

All DuraCloud services which produce an output file now store that file in the x-service-out space.
Services which produce log files store those logs in the x-service-work space.
The names of the output files have been made more consistent, making it simpler to determine which files correspond to which
service deployment.

Password security has been improved.
All passwords used within DuraCloud are now immediately pushed through a hashing function before being are stored, so that
no user passwords are transferred or stored as clear text.

A ServiceClient is now available, to compliment the StoreClient and make it easier to make direct API calls to manipulate DuraCloud
services.

For more details about specific changes in release 0.9, see the .JIRA issue tracker

Release 0.8

Released: Jan 26, 2011

The primary features of release 0.8 are:

Simplified services
The listing of services has been better organized, to make finding the service you would like to run simpler.
All services now require you to set fewer options, simplifying the deployment process.
Bulk services (Image Transformer - Bulk, Bit Integrity Checker - Bulk, and Duplicate on Demand) now provide a standard
configuration mode which handles the setting of server type, and number of servers used to perform the job, so that you no
longer have to make those choices.
The output location for services has been set to the space, which removes the need to set this value for eachx-service-out
service, and provides a standard location to look for service output reports.
The work location for services has been set to the space, which removes the need to set this value for eachx-service-work
service, and provides a standard location to look for service logs and other run time artifacts.

More reliable services
Several bugs which have caused services to fail have been resolved.

Sync Tool command line flags now match those offered by the Retrieval Tool.
UI updates which provide better visual cues for which storage provider is in use.
A host of bug fixes and small tweaks

For more details about specific changes in release 0.8, see the .JIRA issue tracker

Release 0.7

Released: Oct 28, 2010

The primary features of release 0.7 are:

A new , a companion to the existing , which is a command-line tool for the retrieving content from DuraCloudRetrieval Tool Sync Tool
spaces.
A new service, which can be run over content stored in Amazon to create a listing of checksums calculated forBulk Bit Integrity Checker
each file. This new service pairs well with the service (previously known as the Fixity Service), allowing the heavyBit Integrity Checker
processing to be handled in parallel using Hadoop on an Amazon EC2 cluster, and the simpler checks and comparisons to be handled by
the DuraCloud instance.
A new service, which can be used to copy files from the primary Amazon store into another storage provider. ThisDuplicate on Demand
service pairs well with the service (previously known as the Replication Service) by performing the large up-frontDuplicate on Upload
copy using Hadoop on an Amazon EC2 cluster, then allowing Duplicate on Upload to watch for and add new files as they are uploaded.
Integration of a new storage provider: .Microsoft Windows Azure

For more details about specific changes in release 0.7, see the .JIRA issue tracker

Note that there have been during testing of the Bulk Image Transformer (included in release 0.6 as the Bulk Image Conversionissues discovered
Service). If you choose to run this service, it is recommended that the size of images being used be kept under 100MB. The likelihood of success
appears to increase with server size, and number of servers being set to 3 or more is recommended. If you do run this service, please note the
data set and configuration and make us aware of the outcome.

Release 0.6

Released: Sept 03, 2010

The primary features of release 0.6 are:

Addition of a new Fixity Service, which allows for bit integrity checking on content stored within DuraCloud. This service has many options

https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10198
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10175
http://www.microsoft.com/windowsazure/storage/default.aspx
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10169
https://jira.duraspace.org/browse/DURACLOUD-279

to fit various usage needs. For more information, see the Fixity Service page.
Addition of a new Bulk Image Conversion Service, which, like the Image Conversion Service, allows for converting images into other
formats. This new service, however, makes use of Hadoop in the background to run the conversion using multiple servers, allowing for
much higher overall throughput.
An updated handling of space metadata so that spaces with a large number of content items will not cause slow response times. Now
spaces with more than 1000 items will initially show a value of 1000+ as the number of items in the space. DurAdmin, the administrative
interface, will then calculate the total number of items on the fly.
The Sync Tool has a new option (-e) which will cause the tool to exit once it has completed syncing rather than continually monitoring for
changes. This makes it easier for administrators to include the Sync Tool in scripts which run daily or weekly to ensure all local content is
moved to DuraCloud.
DurAdmin now provides a way to delete groups of content items and spaces in one step.
A host of bug fixes and small tweaks

For more details about specific changes in release 0.6, see the .JIRA issue tracker

Release 0.5

Released: July 28, 2010

The primary feature of release 0.5 is the addition of a completely new administrative user interface. This UI, called DurAdmin like its predecessor,
provides for easy access to the primary features of DuraCloud.

For more details about specific changes in release 0.5, see the .JIRA issue tracker

Release 0.4

Released 0.4.1: June 30, 2010

This build release is the first publicly available
It primarily provides clean-up of projects and tests

Released 0.4: June 21, 2010

The primary features added in release 0.4 of DuraCloud were:

Media Streaming Service
Provides a way to enable streaming for video and audio files as well as providing an example media player.

Logging moved to SLF4J over Logback
Provides greater consistency in log output and greater flexibility in log configuration

For more details about specific changes in release 0.4, see the .JIRA issue tracker

Release 0.3

Released: May 17, 2010

The primary features in the third pilot release of DuraCloud are:

Security
All DuraCloud applications now require authentication prior to performing write activities
Read activities on 'closed' spaces also require authentication, but 'open' spaces allow anonymous read access

Sync Tool
Provides a command line utility for keeping DuraCloud content synchronized with the local file system

Other improvements in the 0.3 release:

Image Conversion Service
Adds an option to convert images to the (web standard) sRGB color space
Adds the capability to perform multiple conversions at once (providing the compute capacity is available) and provides more
frequent activity feedback through the continual writing of the conversion output file

DuraStore
Adds an option for users to provide MD5 checksum when adding content. This disables the in-transfer MD5 computation
(providing improved performance) and compares the final MD5 computed by the storage provider with the user provided MD5.

For more details about specific changes in release 0.3, see the .JIRA issue tracker

Release 0.2

https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10170
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10171
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10172
https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10173

Released: Feb 19, 2010

The second pilot release of DuraCloud focused on providing access to services which can be run over content, as well as improvements to the
storage foundation provided by the first release.

Services available as of release 0.2:

J2K service - serves J2K images, provides a J2K image viewer
Image Conversion service - converts image files from one format to another
Replication service - replicates content stored in one provider to another upon content upload
Web Application Utility service - infrastructure service required by J2K service (allows for deployment of web applications)
ImageMagick service - infrastructure service required by Image Conversion service (provides access to ImageMagick utilities)

Service functions available as of release 0.2:

Services may be deployed with configuration
Available and deployed services may be listed
Deployed service configuration may be viewed and updated
Deployed service properties may be viewed
Deployed services may be undeployed and redeployed

New storage functions available as of release 0.2:

Space content may be listed in chunks with an optional prefix filter
Space and content metadata may be edited via the UI
Space and content metadata tags may be added/removed via the UI

For more details about specific changes in release 0.2, see the . Note that while most items included in the release are listed inJIRA issue tracker
the tracker, we migrated to using JIRA while working on release 0.2, so issues completed prior to the migration are not included.

Release 0.1

Released: Nov 2, 2009

The first pilot release of DuraCloud laid the foundation for storage across underlying providers.

Through either the web-ui or via direct REST calls

underlying providers may be listed
spaces may be created/deleted
content may be uploaded/downloaded/deleted
metadata may be viewed
metadata may be modified

modification is fully supported through the REST API
modification is partially supported through the web-ui

DuraCloud Sync Tool

Introduction

The Sync Tool is a utility which was created in order to provide a simple way to move files from a local file system to DuraCloud and subsequently
keep the files in DuraCloud synchronized with those on the local system.

Download

Download the sync tool here from the Downloads page.

How the Sync Tool Works

When you run the Sync Tool for the first time, you must include DuraCloud connection information (host, port, username, password) as
well as the space where you would like all of your files stored. You must also provide a list of directories which will be synced to
DuraCloud and a directory for the Sync Tool to use for its own work.
When the Sync Tool starts up, it will look through all of the files in each of the local content directories and add them to its internal queue
for processing. Each of those files will then be written to your DuraCloud space. As this initial write is happening a listener is set up to
watch for any file changes within each of the content directories. As a change occurs (a file is added, updated, or deleted), that change is
added to the queue, and the appropriate action is taken to make the DuraCloud space consistent with the local file (i.e. the file is either
written to the space or deleted from the space.)
You can stop the Sync Tool at any time by typing 'x' or 'exit' on the command line where it is running. It will stop all listeners, complete

https://jira.duraspace.org/secure/IssueNavigator.jspa?mode=hide&requestId=10174
https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

any file transfers that are in progress, and close down.
When you restart the Sync Tool, if you point it at the same work directory, it will pick up where it left off. While the Sync Tool is running, it
is constantly writing backups of its internal queue, so it first reads the most current backup and begins processing the files there. It then
scans the content directories to see if there are any files which have been added or updated since the last backup, and it also pulls a list
of files from the DuraCloud space and scans that list to see if any local files have been deleted. Any changes detected are added to the
internal queue, and the Sync Tool continues to run as usual.

Operational notes

Restarting
You can perform a restart of the Sync Tool by using the -g command line option to point to the Sync Tool configuration file, which
is written into the work directory (named synctool.config)
If you would like the Sync Tool to perform a clean start rather than a restart (i.e. you would like it to compare all files in the
content directories to DuraCloud) you will need to either point it to a new work directory, or clear out the existing work directory.
The Sync Tool will perform a clean start (not a restart) if the list of content directories is not the same as the previous run. This is
to ensure that all files in all content directories are processed properly.

Collisions
The Sync Tool allows you to sync multiple local directories into a single space within DuraCloud. Because of this, there is the
possibility of file naming collisions, where two local files resolve to the same DuraCloud ID. If this happens, one file will be
overwritten by the other. There are a few ways to ensure that this does not occur:

Ensure that the top level files and directories within the set of content directories do not have overlapping names.
Sync only a single directory to a space. You can run multiple copies of the Sync Tool, each over a single local directory,
syncing to its own DuraCloud space.

Work Directory - these files and directories can be found in the work directory (specified using the -w command line parameter)
Config Files

When the Sync Tool starts up, it writes the list of parameters and values provided by the user on startup to a file called
synctool.config in the work directory. This file can be used to restart the Sync Tool, using the -g parameter to point to the
file's location. You can also restart the Sync Tool by indicating the same set of options as used originally. The -g
parameter is for convenience only and is not required in any circumstance. Note that this file is overwritten each time the
Sync Tool is run with a different set of parameters, so you may choose to copy the file elsewhere (or give it a new name)
if you would like to keep a copy of a particular configuration set.
You may also see a file named synctool.config.bak in the work directory which is used to compare against the current
config in order to determine if a restart is possible. In order for a restart to occur, the list of content directories (-c
parameter) must be the same as the previous execution of the tool, and there must be at least one changed list backup
(see below.)

Changed List Directory
While the Sync Tool is running it is constantly updating the list of files which have been changed (when starting the first
time, this includes all files in the directories that need to be synced). In order to allow the Sync Tool to restart after it has
been stopped, this list of files is continually backed up into the directory. There is no reason to edit thesechangedList
files, but you may choose to delete the directory along with the config files mentioned above to ensure thatchangedList
the Sync Tool does not attempt to perform a restart.

Logs Directory
Information about what the Sync Tool is doing while it is running can be found in the sync-tool.log file. It is a good idea to
monitor this file for errors and warnings as this information is not printed to the console.
The duracloud.log file is useful for application debugging when the information in the sync-tool.log file is insufficient to
understand a problem.

Prerequisites

You must have Java version 6 or above installed on your local system. If Java is not installed, you will need to and install it. Todownload
determine if the correct version of Java is installed, open a terminal or command prompt and enter

java -version

The version displayed should be 1.6.0 or above. If running this command generates an error, Java is likely not installed.
You must have downloaded the Sync Tool. It is available as a link near the top of this page.

Starting the Sync Tool

To run the Sync Tool, open a terminal or command prompt and navigate to the directory where the Sync Tool is located
To display the help for the Sync Tool, run

java -jar synctool-1.0.0-driver.jar

When running the Sync Tool for the first time, you will need to use these options:

http://www.java.com

Short
Option

Long Option Argument
Expected

Required Description Default
Value (if
optional)

-h --host Yes Yes The host address of the DuraCloud DuraStore application

-r --port Yes No The port of the DuraCloud DuraStore application 443

-i --store-id Yes No The Store ID for the DuraCloud storage provider The
primary
storage
provider is
used

-s --space-id Yes Yes The ID of the DuraCloud space where content will be stored

-u --username Yes Yes The username necessary to perform writes to DuraStore

-p --password Yes Yes The password necessary to perform writes to DuraStore

-c --content-dirs Yes Yes A list of the directory paths to monitor and sync with DuraCloud.
If multiple directories are included in this list, they should be
separated by a space.

-w --work-dir Yes Yes The state of the sync tool is persisted to this directory

-f --poll-frequency Yes No The time (in ms) to wait between each poll of the sync-dirs 10000 (10
seconds)

-t --threads Yes No The number of threads in the pool used to manage file transfers 3

-m --max-file-size Yes No The maximum size of a stored file in GB (value must be between
1 and 5), larger files will be split into pieces

1

-d --sync-deletes No No Indicates that deletes performed on files within the content
directories should also be performed on those files in
DuraCloud; if this option is not included all deletes are ignored

Not set

-x --exit-on-completion No No Indicates that the sync tool should exit once it has completed a
scan of the content directories and synced all files; if this option
is included, the sync tool will not continue to monitor the content
dirs

Not set

When the Sync Tool runs, it creates a backup of your configuration in the work directory that you specify. When running the tool again,
you can make use of this file to keep from having to re-enter all of the options specified on the initial run. In this case you need only a
single option:

Short
Option

Long
Option

Argument
Expected

Required Description

-g --config-file Yes Yes Read configuration from this file (a file containing the most recently used
configuration can be found in the work-dir, named synctool.config)

An example for running the Sync Tool

java -jar synctool-1.0.0-driver.jar -w C:\tools\synctool\backup -c C:\files\important -f 2000 -h
test.duracloud.org -s important-dir-backup -t 5 -u myname -w mypassword

Runtime commands

While the Sync Tool is running, these commands are available. Just type them on the command line where the tool is running.

Short Command Long Command Description

x exit Tells the Sync Tool to end its activity and close

c config Prints the configuration of the Sync Tool (the same information is printed at startup)

s status Prints the current status of the Sync Tool

l <Level> N/A Changes the log level to <Level> (may be any of DEBUG, INFO, WARN, ERROR)

1.
a.

b.

h help Prints the runtime command help

DuraCloud Java Clients

Download

Download the Store Client, Service Client, and Report Client from the Downloads page

Available clients

StoreClient

DuraCloud provides access to files stored in cloud storage systems through an application called DuraStore. DuraStore is installed and running
on your DuraCloud instance and can be accessed via a interface. In order to aid Java developers in communicating with DuraStore, a JavaREST
client, called StoreClient was written.

ServiceClient

DuraCloud provides management capabilities to deploy, undeploy, configure, and gain status of the services within DuraCloud through an
application called DuraService. DuraService is installed and running on your DuraCloud instance and can be accessed via a interface. InREST
order to aid Java developers in communicating with DuraService, a Java client, called ServiceClient was written.

ReportClient

DuraCloud provides reporting capabilities which assist in understanding and managing the content stored in DuraCloud and services run through
DuraCloud. These capabilities are included in an application called DuraReport. DuraReport is installed and running on your DuraCloud instance
and can be accessed via a interface. In order to aid Java developers in communicating with DuraReport, a Java client, called ReportClientREST
was written.

Using the clients

To use any of the above clients, you will need all of the jars included in the libs directory of the download package to be available on your
classpath. You will then be able to write code using the provided Javadocs to interact with the client.

Example code

For each of the clients listed above, an example Java class has been provided to assist in set up and testing, as well as a starting point for writing
your client code. The example client (found in ExampleClient.java) includes a simple main class which performs a subset calls the client is
capable of performing, and printing information to the console. To run an example:

Extract the client zip file
Update the HOST, PORT, USERNAME, and PASSWORD constant values in ExampleClient.java as needed to connect to your
DuraCloud instance.
Make sure Ant is available on your path and type "ant" to compile the example.
Type "ant run" to run the example.

DuraCloud Administration
This document details some of the considerations of concern to a DuraCloud administrator.

Naming restrictions

Space names
The following restrictions apply to user-defined space names

only lowercase letters, numbers, periods, and dashes
no adjacent pair of "-" and/or "."
no number immediately following the last "."
between 3 and 63 characters
must start with a letter
may not end with a dash

Note: Users can provide space names through the that do not follow these conventions, but the space actuallyREST-API

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

1.

b.

2.
a.

3.
a.

1.

2.

1.
2.
3.

created will have a different name under the covers.
Reserved space names

Due to some specific operations exposed through the durastore , the following names are unavailable as user-definedREST-API
space names

stores
spaces
security
task

Content object names
The only restrictions are that a content object name

cannot include a question mark '?' character
cannot include a reverse solidus (backslash) '\' character
cannot include a semicolon ';' character
is limited to 1024 bytes (byte count is checked after URL and UTF-8 encoding)

DuraCloud Services
Introduction
Duplicate on Change
Duplicate on Demand
Image Server
Media Streamer
Bit Integrity Checker
Bit Integrity Checker - Tools
Bit Integrity Checker - Bulk
Image Transformer
Image Transformer - Bulk

Introduction

The DuraCloud application provides a set of services which can be deployed and used for a variety of purposes, primarily to process the content
which has been loaded into DuraCloud storage. The following list of services describes how each service is expected to be used and the options
available for tailoring the service to your needs.

Note that the current way all DuraCloud services are configured, they will not auto-restart if they fail during processing. If you notice a failed job
state, simply redeploy the service. Automatic service recovery is on the roadmap for DuraCloud development in the future and will be made
available as soon as possible.

Duplicate on Change

Description:

The Duplicate on Change service provides a way to ensure that the content stored in DuraCloud is synchronized between two different storage
providers. The Duplicate on Change service duplicates any changes made to spaces, content, or metadata on the store being watched by the
service. This means that once the Duplicate on Change service is deployed, it notices all content that is added, updated, or deleted on the
watched DuraCloud provider and performs the same functions on a secondary provider. All content that is copied will be placed in an identically
named space in the secondary storage location with the same metadata fields attached. The duplication provided by this service is one-way;
changes made to the secondary provider will not be reflected in the primary.

Configuration Options:

Watch this store: The primary storage location which DuraCloud will monitor for changes. When spaces, content, or metadata are added,
updated, or deleted in this store, the same actions will be taken in the secondary store.
Apply to this store: The secondary store where changes from the primary store will be applied.

Duplicate on Demand

Description:

The Duplicate On Demand service provides a simple way to duplicate content from one space to another. This service is primarily focused on
allowing the duplication of content from the primary storage provider to a secondary provider. To begin, a source space is chosen, along with a
store and space to which content will be duplicated. The service then performs a copy of all content and metadata in the source space to the
duplication space, creating the space if necessary. When the service has completed its work, a results file will be stored in the chosen space and
a set of files (primarily logs) created as part of the process will be stored in the work space.

Configuration Options:

Source Space: DuraCloud space where source files can be found
Copy to this store: DuraCloud store to which content will be copied

3.
4.

a.
b.

i.
ii.

1.

1.

2.

Copy to this space: DuraCloud space where content will be copied
Standard vs. Advanced configuration

Standard mode automatically sets up the service to be run
Advanced mode allows the user to configure the number and type of servers that will be used to run the job

Number of Server Instances: The number of servers to use to perform the duplication task.
Type of Server: The type (size) of server used as perform the task. The larger the server, the faster the processing will
occur. Larger servers also cost more than smaller servers to run. For more information, see the Amazon EC2

.documentation

Service Output
All outputs of this service are placed in the system space, .x-service-out

duplicate-on-demand/duplicate-results-<date>.csv
Final report indicating which files were duplicated, as well as any failures encountered

Image Server

Description:

The Image Server provides a viewer for image files through use of the . While this service is geared towards serving JPEGDjatoka image server
2000 images, it supports multiple image file types by converting them to JPEG 2000 format on the fly.

Note that the current implementation of this service requires that spaces be set to OPEN in order to use the viewer to view image files.

Configuration Options:

None

Media Streamer

Description:

The Media Streamer provides streaming capabilities for video and audio files. The service takes advantage of Amazon Cloudfront streaming, so
files to be streamed must be within a space on an Amazon provider. Also, all media to be streamed by this service needs to be within a single
space.

Amazon Cloudfront streaming uses the Flash Media Server to host streaming files over RTMP. File formats supported include MP3, MP4 and
 For a full listing of supported file types see the .FLV among others. Flash Media Server documentation

Configuration Options:

Source Media Space: The DuraCloud space where the source video and audio files to be streamed are stored. The Media Streamer
service attempts to stream all files in this space.
Viewer Space: A DuraCloud space where example viewer files will be stored. After the service has started, this space will include a
playlist including all items in the source media space as well as example html and javascript files which can be used to display a viewer.

Output Files, the following files can be found in the configured Viewer Space once the Media Streamer is running:

player.swf - The flash-based video player JWPlayer
playlist.xml - A playlist, created by DuraCloud, which includes all of the items in your Source Media Space
playlistplayer.html - An HTML file, created by DuraCloud, which uses JWPlayer to display the items in the playlist
singleplayer.html - An HTML file, created by DuraCloud, which uses JWPlayer to display a single media file (typically, the first item in your
Source Media Space)
stylish.swf - A supplementary flash file used to style the JWPlayer
swfobject.js - A javascript file () used to embed the JWPlayer on a web pageavailable from here
viewer.js - A javascript file, created by DuraCloud, used to simplify the loading of JWPlayer

All of the output files are intended as examples only. Their purpose is give developers a starting point for embedding video streamed by
DuraCloud on their own web pages. Feel free to use, modify, ignore, or delete these files.

The Media Streamer expects that all files to be streamed exist in the Source Media Space when the service is started. If you
add files when the service is already running and would like those files to be streamed as well, you will need to restart the Media
Streamer.

Bit Integrity Checker

Description:

The Bit Integrity Checker provides the ability to verify that the content held within DuraCloud has maintained its bit integrity. There are two modes

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://djatoka.sourceforge.net
http://help.adobe.com/en_US/FlashMediaServer/3.5_TechOverview/WS5b3ccc516d4fbf351e63e3d119ed944a1a-7ffa.html#WS5b3ccc516d4fbf351e63e3d119ed944a1a-7fe7
http://www.longtailvideo.com/players/
http://code.google.com/p/swfobject/

1.
2.

1.
2.
3.

a.

1.

2.

3.

1.
2.
3.

1.
a.

i.
ii.

b.
i.

2.
a.

i.
ii.
iii.

b.
i.

3.
a.
b.
c.

i.
ii.

1.

2.

of operation.
Modes:

Verify integrity of a Space
Verify integrity of an item list

When running in the mode, the checker performs the following stepsVerify integrity of a Space

collect the content hash values for each item from the underlying storage provider
stream through each item recalculating their hashes
compare the two listings

When running in the mode, the checker performs the following stepsVerify integrity of an item list

stream through each item in the provided listing, recalculating their hashes
compare the newly generated listing with the provided listing

Configuration Options:

Stores: The underlying storage provider over which the service will run
Space containing content items: The DuraCloud space in which the content items to be verified reside
Verify integrity of an item list mode

Input listing name: Name of the content item which contains the listing of items over which to run the service

Service Ouputs
All outputs of this service are placed in the system space, .x-service-out

bitintegrity/fingerprints-gen-<spaceId>-<date>.csv
Interim listing generated with hash values from underlying storage provider

bitintegrity/fingerprints-<spaceId>-<date>.csv
Interim listing with hashes recalculated from content streams

bitintegrity/fixity-report-<spaceId>-<date>.csv
Final report with status of integrity check

Bit Integrity Checker - Tools

Description:

The Bit Integrity Checker Tools provide additional bit integrity checking utilities which can be used to perform specific integrity checking tasks.

Modes:

Generate integrity information for a Space
Generate integrity information for an item list
Compare two integrity reports

Configuration Options:

Mode 1 - Generate integrity information for a Space
Get integrity information from...

The storage provider: Determine the file MD5 by asking the storage provider for its stored MD5 value
The files themselves: Determine the file MD5 by retrieving them from the storage provider and computing the MD5

Stores: The underlying storage provider in which the following space resides
Space containing content items: The DuraCloud space in which the content items to be considered reside

Mode 2 - Generate integrity information for an item list
Get integrity information from...

The storage provider: Determine the file MD5 by asking the storage provider for its stored MD5 value
The files themselves: Determine the file MD5 by retrieving them from the storage provider and computing the MD5
Input listing name: Name of the content item which contains the listing of items over which to run the service

Stores: The underlying storage provider in which the following space resides
Space with input listing: The DuraCloud space in which the input listing file resides

Mode 3 - Compare two integrity reports
Input listing name: Name of the first content item which contains a listing of items to be compared to the second listing
Second input listing name: Name of the second content item which contains a listing of items to be compared to the first listing
Stores: The underlying storage provider in which the following spaces reside

Space with input listing: The DuraCloud space in which the first input listing file resides
Space with second input listing: The DuraCloud space in which the second input listing file resides

Service Ouputs
All outputs of this service are placed in the system space, .x-service-out

bitintegrity/fingerprints-<spaceId>-<date>.csv
Listing of hashes when running in or modesfrom space from list

bitintegrity/fixity-report-<listingId-0>-vs-<listingId-1>-<date>.csv

2.

1.
2.

a.

b.

i.
ii.

3.
a.
b.

i.
ii.

1.

2.

1.
2.

3.
4.

5.

6.

1.

1.

Comparison report of two hash listings

Bit Integrity Checker - Bulk

Description:

The Bulk Bit Integrity Checker provides a simple way to determine checksums (MD5s) for all content items in any particular space by leveraging
an Amazon Hadoop cluster. This service is designed for large datasets (+10GB).

Configuration Options:

Space to verify: DuraCloud space where source files are stored
Service Mode

Verify integrity of a Space: Retrieves all items in a space, computes the checksum of each, and compares that value with the
MD5 value available from the storage provider
Verify integrity from an item list: Retrieves all items listed in the item list, computes the checksum of each, and compares that
value with the MD5 value provided in the item list

Space with input listing: The DuraCloud space in which the input listing file resides
Input listing name: Name of the content item which contains the listing of items over which to run the service

Standard vs. Advanced configuration
Standard mode automatically sets up the service to be run
Advanced mode allows the user to configure the number and type of servers that will be used to run the job

Number of Server Instances: The number of servers to use to perform the duplication task.
Type of Server: The type (size) of server used as perform the task. The larger the server, the faster the processing will
occur. Larger servers also cost more than smaller servers to run. For more information, see the Amazon EC2

.documentation

Service Ouputs
All outputs of this service are placed in the system space, .x-service-out

bitIntegrity-bulk/bitIntegrity-report-<date>.csv
Final report with status of integrity check

bitIntegrity-bulk/bitIntegrity-results.csv
Interim listing with hashes recalculated from content streams

Image Transformer

Description:

The Image Transformer provides a simple way to transform relatively small numbers of image files from one format to another.

Note that the ImageMagick service must be deployed prior to using the Image Transformer

Configuration Options:

Source Space: DuraCloud space where source image files are stored
Destination Space: DuraCloud space where transformed image files will be placed, along with a file which details the results of the
conversion process
Destination Format: The image format to which the source files will be transformed
Destination Color Space: The colorspace of the transformed files, either "Source Image Color Space", meaning that the colorspace of the
original image will be used, or sRGB, meaning that the colorspace will be transformed to sRGB.
Source file name prefix: Only files beginning with the value provided here will be transformed. For example, if you enter ABC, only files
whose names begin with the string ABC will be processed. This field is optional.
Source file name suffix: Only files ending with the value provided here will be transformed. For example, you enter .jpg, only files whose
names ends with the string .jpg will be processed. This field is optional.

Service Output
All outputs of this service are placed in the system space, .x-service-out

image-transformer/image-transformer-results-<date>.csv
Final report indicating images converted and any errors encountered.

Image Transformer - Bulk

Description:

The Bulk Image Transformer provides a simple way to transform image files from one format to another in bulk. This service uses Amazon's
Elastic Map Reduce capability to run the image transformation task within a Hadoop cluster.

Configuration Options:

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/

1.
2.

3.
4.

5.

6.

7.
a.
b.

i.
ii.

1.

Source Space: DuraCloud space where source image files are stored
Destination Space: DuraCloud space where transformed image files will be placed, along with a file which details the results of the
transformation process
Destination Format: The image format to which the source files will be transformed
Destination Color Space: The colorspace of the transformed files, either "Source Image Color Space", meaning that the colorspace of the
original image will be used, or sRGB, meaning that the colorspace will be transformed to sRGB.
Source file name prefix: Only files beginning with the value provided here will be transformed. For example, if you enter ABC, only files
whose names begin with the string ABC will be processed. This field is optional.
Source file name suffix: Only files ending with the value provided here will be transformed. For example, you enter .jpg, only files whose
names ends with the string .jpg will be processed. This field is optional.
Standard vs. Advanced configuration

Standard mode automatically sets up the service to be run
Advanced mode allows the user to configure the number and type of servers that will be used to run the job

Number of Server Instances: The number of servers to use to perform the duplication task.
Type of Server: The type (size) of server used as perform the task. The larger the server, the faster the processing will
occur. Larger servers also cost more than smaller servers to run. For more information, see the Amazon EC2

.documentation

Service Output
All outputs of this service are placed in the system space, .x-service-out

image-transformer-bulk/image-transformer-results-<date>.csv
Final report indicating images converted and any errors encountered.

Building DuraCloud Software from Source
Introduction
Prerequisites
Building DuraCloud

Build with unit tests
Build with OSGi services container integration tests

Optional items
Code coverage
Logging

DuraCloud internal tools
ServicesAdmin CLI
Application initialization utility
StoreClient package

Misc configuration/discussion
Services on Windows
root user
application config
OSGi container

Introduction

DuraCloud application software is composed of many parts. A breakdown of the primary pieces is as follows:

DuraStore - this web application provides the access to and management of storage resources, which includes handling the storage
portion of the DuraCloud REST API
StorageProviders - this set is made up of the StorageProvider interfaces and the implementations which connect to distinct cloud stores
(currently Amazon S3, Rackspace CloudFiles, and EMC Atmos)
DuraService - this web application handles the deployment and management of services within DuraCloud, which includes handling the
services portion of the DuraCloud REST API
Services - the set of all deployable services, as well as the support projects that allow the DuraCloud services infrastructure to function
ComputeProviders - this set is made up of the ComputeProvider interfaces and the implementation which connect to distinct cloud
compute services (currently Amazon EC2, using the typica library)
Security - handles security for the DuraCloud applications
Common - a set of projects which provide utilities for other portions of the codebase to reuse

The DuraCloud software, by its very nature, is designed to be integrated with underlying cloud storage and compute providers.
As may be expected, these integrations are exercised through many "integration tests". In order for DuraCloud to connect to these underlying
providers, appropriate credentials must first be established and available to the build framework.
However, in order to get up and running quickly with the software, the baseline can be initially built with just its unit tests.
Once the developer has independently acquired credentials for one or more of the supported underlying storage providers (below) builds may
then be run with integration tests.

Amazon S3
Rackspace CloudFiles
Windows Azure

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/s3/
http://www.rackspacecloud.com/
http://www.microsoft.com/windowsazure/storage/default.aspx

1.
2.
3.

1.
2.
3.
4.

1.

2.

3.
a.

4.

5.
a.

6.
a.

This guide lays out the three tiers of building/testing the baseline:

build with unit tests
build with storage and services integration tests
build with OSGi services container integration tests

Although this document is written from a Linux environment perspective, analogous builds/installations have been tested in Windows (but may
have limitations, as noted below). Any comments or feedback are welcomed.

Prerequisites

Software that must be installed on your system prior to building/using DuraCloud

Maven 2.2.1 or above
Tomcat 6.x or above
Java 6 (note: the djatoka service has compatibility issues with open-jdk)
Subversion

Building DuraCloud

Any portions of the configuration below for which you need to include a replacement value will be written in all capital letters and
included in brackets: [LIKE-THIS]

Build with unit tests

Check out latest stable release from Subversion repository

svn co https://svn.duraspace.org/duracloud/tags/duracloud-1.0.0

Set environment variables

export JAVA_OPTS="-XX:MaxPermSize=256m"
export MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=1024m"

Configure Tomcat
Add to $CATALINA_HOME/conf/tomcat-users.xml

<tomcat-users>
 <role rolename="manager"/>
 <role rolename="admin"/>
 <user username="[ANY-USERNAME]" password="[ANY-PASSWORD]" roles="admin,manager"/>
</tomcat-users>

Start tomcat

$CATALINA_HOME/bin/startup.sh

Configure Maven2
Add tomcat user to $M2_HOME/conf/settings.xml

<servers>
 <server>
 <id>tomcat-server</id>
 <username>[ANY-USERNAME]</username>
 <password>[ANY-PASSWORD]</password>
 </server>
</servers>

Build
From top of source tree

6.
a.

1.

a.

b.
c.
d.

2.
3.

mvn clean install

Note: Due to the length of time required to execute integration tests as well as the nature of "eventually consistent" cloud
services to not cooperate with a synchronous test suite, these tests are not included in the build by default.

Build with OSGi services container integration tests

This step assumes the successful completion of the previous build instructions

Linux/Mac

Start OSGi service container

cd //services/servicesadmin
mvn clean -f pom-run.xml pax:provision
cd runner
chmod +x run.sh
export BUNDLE_HOME=[DURACLOUD_HOME]/osgi-container
./run.sh

Where [DURACLOUD_HOME] is a directory where the application has write access (can be same as
<duracloud.home> set in Maven settings.xml above)
The run.sh script will start an OSGi container and commandline interface to it
The container starts with required bundles including the 'services-admin' installed
See discussion below on OSGi container for more details

Once the 'services-admin' is running, tests that deploy services into the OSGi environment may be run
From inside the //integration-test module

mvn install -PrunServicesAdminTests

1.

2.

a.
b.

c.

3.
a.
b.

c.
4.

a.
b.
c.

5.
a.

b.

1.

2.

3.

Windows

Set up OSGi service container

cd services/servicesadmin
mvn clean -f pom-run.xml pax:provision
cd runner

(Optional) Set the OSGi bundle storage location

set BUNDLE_HOME=[BUNDLE_HOME]

Where [BUNDLE_HOME] is the full path to an empty directory where the osgi container content will be stored
Open the run.bat file in the runner directory in a text editor and replace all instances of "$BUNDLE_HOME" with
"%BUNDLE_HOME%"
Note: A directory called "$BUNDLE_HOME" under the runner directory will be used as the default bundle home if
one is not specified.

(Optional) Set up logging
Download the logback.xml file into your bundle home directory.found here
Open the logback.xml file in a text editor and edit the LOG_FILENAME property to point to a full file path (including
file name) for a log file.
Note: One benefit to performing this step will be faster start time for your OSGi container.

Start OSGI service container

run.bat

The run.bat script will start an OSGi container and commandline interface to it
The container starts with required bundles including the 'services-admin' installed
See discussion below on OSGi container for more details

Once the 'services-admin' is running, check to ensure that it was created properly
In the console where run.bat was executed, an "osgi" prompt should be available. If it is not available, hitting enter
should bring it up.
Type "ss" and hit enter. This should list all of the available bundles. This list should include 50 items, all of which
are either in the ACTIVE or RESOLVED state.

Optional items

Code coverage

If you plan on using Clover, the following element needs to be added to your maven 'settings.xml'

<profiles>
 <profile>
 <id>profile-clover</id>
 <activation>
 <property>
 <name>profile</name>
 <value>clover</value>
 </property>
 </activation>
 <properties>
 <cloverLicense>[LOCATION-OF-clover.license-FILE]</cloverLicense>
 </properties>
 </profile>
</profiles>

To run clover

mvn clover2:instrument clover2:aggregate clover2:clover -Pprofile-clover

A report will be generated in the following directory:
//target/site/clover/

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

1.
2.

1.

2.

1.
2.
3.

1.

2.

Logging

DuraCloud uses the SLF4j logging framework backed by the LogBack implementation
By adding either a logback.xml or logback-test.xml file on the classpath, logging configuration can be customized

DuraCloud internal tools

ServicesAdmin CLI

This tool provides a commandline interface for interacting with the 'services-admin' installed in a running OSGi container (see notes
above for starting the container)
To build and run the CLI, from within the //servicesadminclient module

mvn assembly:assembly
java -cp target/servicesadminclient-[VERSION]-cli.jar

Application initialization utility

This utility takes a config file (example at //app-config/src/main/resources/init.props) and initializes an instance of duracloud
Until the applications durastore and duraservice are initialized, they are non-functional
To build and run the app-config utility, from within the //app-config module

mvn assembly:assembly
java -jar target/app-config-1.0.0-driver.jar

StoreClient package

To create a distributable zip of the storeclient and its dependencies, from within //storeclient run

mvn install -Ppackage-client

The zip will be found at /storeclient/target/store-client.zip

Misc configuration/discussion

Services on Windows

The following services do not function in a Windows deployment environment

WebAppUtilService
HelloWebappWrapper
J2KService
ImageMagickService

If you would like to run the ImageConversionService, you must install ImageMagick and have its /bin directory in your PATH, which is essentially
what the ImageMagickService does in a linux environment.

root user

application config

OSGi container

DuraCloud Features

Application Features

Storage system REST API
Space (top level folder) listing
Space creation

1.
2.

Space deletion
Space metadata and tagging
Content (file) listing
Content storage
Content deletion
Content metadata and tagging

Service administration REST API
Available service listing
Deployed service listing
Service deployment
Service configuration
Service undeployment

Reporting system REST API
Storage report listing
Storage report retrieval
Storage report starting and stopping
Storage report scheduling
Service report listing
Service report retrieval

Security requiring authentication on all DuraCloud applications
Web user interface (DurAdmin)

Access to all storage system capabilities, including space and content creation, updates, and deletes
Access to all service administration capabilities, including service deployment, configuration, and undeployment
Bulk deletion of spaces and content items
User account administration

Core Services

Media Streamer:
Provides streaming capabilities for video and audio files.

Duplicate on Change:
Provides a simple mechanism for synchronizing your content between two storage providers. A running Duplicate on
Change service will notice when a content item or space is added, updated, or deleted in one store and duplicate those
changes in another store.

Duplicate on Demand:
Provides a simple way to duplicate content (and its associated metadata) from a space in the primary storage provider
to a space in another provider.

Image Server:
Deploys an instance of the Adore Djatoka web application which provides serving and viewing of JPEG2000 images.
Note that in order to view images using the Image Server, the images must be in an OPEN space.

Image Transformer:
Provides a simple way to convert image files from one format to another.

Image Transformer - Bulk:
Handles the conversion of large numbers of images files from one format into other.

Bit Integrity Checker:
Provides the ability to verify that the content held within DuraCloud has maintained its bit integrity.

Bit Integrity Checker - Bulk:
Provides a simple way to determine checksums (MD5s) for all content items in any particular space by leveraging an
Amazon Hadoop cluster. This service is designed for large datasets (+10GB).

Bit Integrity Checker - Tools:
Provides additional bit integrity checking utilities which can be used to perform specific integrity checking tasks.

Tools

Sync Tool:
Provides a command line utility for keeping DuraCloud content synchronized with the local file system.

Retrieval Tool:
Provides a command line utility for transferring content stored in DuraCloud to the local file system.

Chunker Tool:
Provides a command line utility for transferring single files to DuraCloud.

DuraCloud Security

Overview

The security approach is divided into two distinct spheres of responsibility

Channel security (encryption)
Application security (AuthN / AuthZ)

The configuration of any given user compute instance will consist of an Apache HttpServer layered on top of Tomcat.

1.

2.

1.

2.

1.
2.

3.
a.
b.

i.
ii.

4.

Apache HttpServer
All requests will come through Apache on port 443 (https) of the instance
The requests will internally be unencrypted, where encryption exists, and redirected to tomcat as open text

Tomcat
A defined set of resource endpoints will require AuthN and AuthZ
Spring-security is being leveraged to wire AuthN and AuthZ across relevant resources

Channel Security Implementation

Apache HttpServer is configured to require all requests to the three DuraCloud web applications (/duradmin, /durastore, and /duraservice)
go over https.
Below are the https enforcement rules configured in Apache

###
 # ensure 'duradmin' uses https
 ###

 RewriteCond %{REQUEST_URI} /duradmin
 RewriteCond %{SERVER_PORT} !^443$
 RewriteRule ^(.*)$ https://%{SERVER_NAME}$1 [R=301,L]

 ###
 # require https for 'durastore' & 'duraservice' for external requests
 ###

 RewriteCond %{REQUEST_URI} ^(/durastore|/duraservice)
 RewriteCond %{SERVER_PORT} !^443$
 RewriteCond %{SERVER_NAME} !^localhost$
 RewriteCond %{SERVER_NAME} !^127.0.0.1$
 RewriteCond %{REMOTE_HOST} !^127.0.0.1$
 RewriteCond ${local-ip-map:%{REMOTE_HOST}} !^localhost$
 RewriteRule ^(.*)$ https://%{SERVER_NAME}$1 [R=301,L]

Application Security Implementation

The basic AuthN flow is as follows

User requests secured resource
If credentials not in request

response 401
Spring AuthenticationProvider performs AuthN

AuthProvider asks UserDetailsService for GrantedAuthorities for given Principal
notes

DuraCloud provides custom UserDetailsService implementation to return UserDetails of requesting Principal
AbstractSecurityInterceptor permanently caches user AuthN decisions by default

Authentication object and "configuration attributes" are passed to AccessDecisionManager for AuthZ

Security Servlet Filters

DuraCloud leverages Spring's mechanism for wiring AuthN/Z into an application across servlet url patterns.
The following access rules are placed across the durastore and duraservice REST-APIs:

Store REST Methods

Action Role

Initialize Stores ROLE_ROOT

Initialize Security Users ROLE_ROOT

Get Stores ROLE_USER

Get Spaces ROLE_ANONYMOUS if space 'open', else ROLE_USER

Get Space ROLE_ANONYMOUS if space 'open', else ROLE_USER

Get Space Metadata ROLE_ANONYMOUS if space 'open', else ROLE_USER

Create Space ROLE_USER

Set Space Metadata ROLE_USER

Delete Space ROLE_USER

Get Content ROLE_ANONYMOUS if space 'open', else ROLE_USER

Get Content Metadata ROLE_ANONYMOUS if space 'open', else ROLE_USER

Store Content ROLE_USER

Set Content Metadata ROLE_USER

Delete Content ROLE_USER

Service REST Methods

Action Role

Initialize Services ROLE_ROOT

Initialize Security Users ROLE_ROOT

Get Services ROLE_USER

Get Service ROLE_USER

Get Deployed Service ROLE_USER

Get Deployed Service Properties ROLE_USER

Deploy Service ROLE_USER

Update Service Configuration ROLE_USER

UnDeploy Service ROLE_USER

1.

2.

3.

4.

5.

1.

Report UI REST Methods

Action Role

Initialize DuraReport Application ROLE_ROOT

Initialize Security Users ROLE_ROOT

Get Latest Storage Report ROLE_USER

Get Storage Report List ROLE_USER

Get Storage Report ROLE_USER

Get Storage Report Info ROLE_USER

Start Storage Report ROLE_USER

Cancel Storage Report ROLE_USER

Schedule Storage Report ROLE_USER

Cancel Storage Report Schedule ROLE_USER

Get Deployed Services Report ROLE_USER

Get Completed Services Report ROLE_USER

Get Completed Services Report List ROLE_USER

Get Services Report ROLE_USER

Administrative UI REST Methods

Action Role

Initialize DurAdmin Application ROLE_ROOT

Initialize Security Users ROLE_ROOT

Roles

The fixed set of users/roles listed below are provided in DuraCloud. Each role in the list below represents a super set of the privileges of those
above it.

ROLE_ANONYMOUS
no username/password

ROLE_USER
user created by DuraCloud-account admin

ROLE_ADMIN
owner of DuraCloud-account

ROLE_SYSTEM
internal user for delegation requests

ROLE_ROOT
DuraSpace personnel

User Management

In order for the administrator of a DuraCloud account to manage new users, an initial user with ROLE_ADMIN privileges is provided at
start-up:

username: admin
password: changeme

Note: Ultimately, the management of users will take place through the DuraCloud.org website (where users initially create accounts).
User management is exposed in Duradmin in the upper-righthand corner of the console, but the usernames/passwords edited here are not
persisted.
This means that when the application is migrated to the next release, those details will need to be re-entered/re-created.

1.

a.
b.
c.
d.
e.

2.

3.

a.
b.

c.

4.

5.

Service Development Guide

Page under construction
AWoods 29-July-2010

Introduction

This document is intended to provide guidelines for developing your own custom services that can be deployed into the DuraCloud services
framework.
The framework has been designed to allow any

Java code that can be
deployed as an OSGi bundle and
implements the interfaceComputeService
to be dynamically installable into a running DuraCloud application instance.

Overview

In order to understand the flow of services within the services framework, there are several entities with which to become familiar:

DuraService

web application that exposes a REST-API for end-user management of services
deploy service
undeploy service
configure service
get service listing
get service properties

responsible for retrieving a service to be deployed from the and streaming it to the Service Registry ServicesAdmin
responsible for mediating subsequent end-user management of deployed services to ServicesAdmin
responsible for passing metadata to the OSGi container when a service is being deployed.

metadata is defined in the service-repo.xml which is built based on the class for each serviceServiceInfo

Service Registry

persistent holding area of deployable services
contains and a single services-configuration descriptor XML objectService Packages
implemented as one or more DuraCloud "space(s)"

the properties file to initialize DuraCloud contains duraservice.service-storage properties which allow configuration of the
host, port, context and space

Service Package

for simple services, this can be a single OSGi bundle, jar file
for more involved services, this would be a zip file containing

OSGi bundle jar that implements the interfaceComputeService
OSGi bundle jars that are both dependencies of the ComputeService bundle (above) and not among the base bundles
installed in the by defaultOSGi Container
any support files (see 'Example Services' below)

ServicesAdmin

management component resident in the OSGi container
exposes an internal REST-API through which communication from takes placeDuraService
responsible for actually communicating with services via their common interfacesComputeService
responsible for keeping track of currently deployed services and dependency-link counters

OSGi Container

production implementation currently in use is Equinox
bundles installed by default are listed as dependencies in the pom-run.xml file in the ServicesAdmin project

Example Services

All of the below services are currently functional and available in the DuraCloud source baseline.
They can all be found within the directoryservices

https://svn.duraspace.org/view/duracloud/trunk/services/computeservice/src/main/java/org/duracloud/services/ComputeService.java
https://svn.duraspace.org/view/duracloud/trunk/duraservice/src/main/java/org/duracloud/duraservice/config/
https://svn.duraspace.org/view/duracloud/trunk/services/computeservice/src/main/java/org/duracloud/services/ComputeService.java
https://svn.duraspace.org/view/duracloud/trunk/services/computeservice/src/main/java/org/duracloud/services/ComputeService.java
https://svn.duraspace.org/view/duracloud/trunk/services/servicesadmin/pom-run.xml?view=markup
https://svn.duraspace.org/view/duracloud/trunk/services/

1.
2.
3.
4.
5.

1.
2.

1.
2.

Pure Java Services

Hello Service
Replication Service
WebAppUtil Service
ImageConversion Service
MediaStreaming Service

Web Application Services

HelloWebAppWrapper Service
J2K Service

System Services

Script Service
ImageMagick Service

General Compute Services

Implementation Guidelines

OSGi Compatibility

Although there are several available OSGi containers, and the DuraCloud test harnesses employ Equinox, Felix, and Knoplerfish, the
production container into which services need to be able to deploy is .Equinox

ComputeService Interface

Dependency Packaging

Service Descriptor

DuraCloud Retrieval Tool

Introduction

The Retrieval Tool is a utility which is used to transfer (or "retrieve") digital content from DuraCloud to your local file system.

Download

Download the retrieval tool from the Downloads page.

How the Retrieval Tool Works

When the Retrieval Tool starts up, it connects to DuraCloud using the connection parameters you provide and gets a list of content items
in the spaces you indicate. It will then proceed to download the files from those spaces, each into a local directory named for the space,
which is placed within the content directory.
For each content item, the Retrieval Tool checks to see if there is already a local file with the same name. If so, the checksums of the two
files are compared to determine if the local file is the same as the file in DuraCloud. If they match, nothing is done, and the Retrieval Tool
moves on to the next file. If they do not match, the file from DuraCloud is retrieved.
By default, when a local file exists and differs from the DuraCloud copy, the local file is renamed prior to the DuraCloud file being
retrieved. If you would prefer that the local file simply be overwritten, you will need to include the overwrite command-line flag when
starting the Retrieval Tool.
As each content file is downloaded, a checksum comparison is made to ensure that the downloaded file matches the file in DuraCloud. If
the checksums do not match, the file is downloaded again. This re-download will occur up to 5 times. If the checksums still do not match
after the fifth attempt, a failure is indicated in the output file.
As each file download completes, a new line is added to the retrieval tool output file in the work directory, indicating whether the
download was successful or not. Files which did not change are not included in the output file.
As the Retrieval Tool runs, it will print its status approximately every 10 minutes to indicate how many files have been checked and
downloaded.
Once all files are retrieved, the Retrieval Tool will print its final status to the command line and exit.
As files are updated in DuraCloud, you can re-run the Retrieval Tool using the same content directory, and only the files which have been

https://wiki.duraspace.org/display/DURACLOUD/DuraCloud+Downloads

added or updated since the last run of the tool will be downloaded.

Operational notes

Content Directory - the directory to which files will be downloaded. A new directory within the content directory will be created for each
space.
Work Directory - the work directory contains both logs, which give granular information about the process, and output files. A new output
file is createdc for each run of the Retrieval Tool, and it stores a listing of the files which were downloaded.

Prerequisites

You must have Java version 6 or above installed on your local system. If Java is not installed, you will need to and install it. Todownload
determine if the correct version of Java is installed, open a terminal or command prompt and enter

java -version

The version displayed should be 1.6.0 or above. If running this command generates an error, Java is likely not installed.
You must have downloaded the Retrieval Tool. It is available as a link near the top of this page.

Starting the Retrieval Tool

To run the Retrieval Tool, open a terminal or command prompt and navigate to the directory where the Retrieval Tool jar file is located
To display the help for the Retrieval Tool, run

java -jar retrievaltool-[version]-driver.jar

When running the Retrieval Tool, you will need to use these options:

Short
Option

Long
Option

Argument
Expected

Required Description Default
Value (if
optional)

-h --host Yes Yes The host address of the DuraCloud DuraStore application

-r --port Yes No The port of the DuraCloud DuraStore application 443

-u --username Yes Yes The username necessary to perform writes to DuraStore

-p --password Yes Yes The password necessary to perform writes to DuraStore

-i --store-id Yes No The Store ID for the DuraCloud storage provider The default
store is used

-s --spaces Yes No The space or spaces from which content will be retrieved. Either this
option or -a must be included

-a --all-spaces No No Indicates that all spaces should be retrieved; if this option is included
the -s option is ignored

Not set

-c --content-dir Yes Yes Retrieved content is stored in this local directory

-w --work-dir Yes Yes Logs and output files will be stored in the work directory

-o --overwrite No No Indicates that existing local files which differ from files in DuraCloud
under the same path and name sould be overwritten rather than
copied

Not set

-t --threads Yes No The number of threads in the pool used to manage file transfers 3

An example for running the Retrieval Tool

java -jar retrievaltool-1.0.0-driver.jar -c content -h test.duracloud.org -u myname -p
mypassword -w work -s space1 space1 -o

http://www.java.com

Known Issues

The following issues are known to exist in release 1.0.0 of DuraCloud:

Title Issue Tracker Item Work Around

Incorrect redirects
from HTTP to
HTTPS

When performing PUT/POST/DELETE requests via the REST API, if the
URL uses http:// rather than https:// the response is a 404.

DURACLOUD-255 Use https:// when
performing requests via
the REST API of
hosted DuraCloud
instances

Login requires
multiple attempts

When logging into DurAdmin, the first time a username/password is
entered and submitted, the fields simply clear. A second attempt to login
with the same credentials succeeds.

DURACLOUD-260 If the initial login
attempt fails, attempt to
log in again.

Incorrect MIME
types set on files

When uploading files via the sync tool which do not have an extension,
the MIME type is always set to application/octet-stream

DURACLOUD-227 Set the MIME type of
these files either
through DurAdmin or
via the REST API

File not streaming
with Media
Streamer deployed

A file (or set of files) do not get permissions set properly to allow
streaming

DURACLOUD-335 Redeploy the Media
Streamer with the same
settings.

Bulk Image
Transformer
converting from
JP2

The Bulk Image Transformer has seen failures when converting JP2 files
into other formats

DURACLOUD-345 Use a larger type
and/or number of
servers for this type of
job

More issues and planned improvements can be found on the .DuraCloud issue tracker

https://jira.duraspace.org/browse/DURACLOUD-255
https://jira.duraspace.org/browse/DURACLOUD-260
https://jira.duraspace.org/browse/DURACLOUD-227
https://jira.duraspace.org/browse/DURACLOUD-335
https://jira.duraspace.org/browse/DURACLOUD-345
https://jira.duraspace.org/browse/DURACLOUD

	DuraCloud Release 1.0
	DuraCloud Chunker Tool
	Logging Configuration
	DuraCloud REST API
	REST API Examples Using curl

	Release Notes
	DuraCloud Sync Tool
	DuraCloud Java Clients
	DuraCloud Administration
	DuraCloud Services
	Building DuraCloud Software from Source
	DuraCloud Features
	DuraCloud Security
	Service Development Guide
	DuraCloud Retrieval Tool
	Known Issues

