DuraCloud
Managing durable data in the cloud

Michele Kimpton, Director DuraSpace
Open Source Portfolio
Goals of DuraSpace

Stewardship:
Support and align open source development communities for DSpace and Fedora

Innovation:
Think beyond existing platforms
New strategies for enabling access and preservation of digital content

Sustainability:
Develop business model to sustain the non-profit and open technologies we support
Emergence of Infrastructure

Systems

- Integrate components
- Central control
- Dedicated/specialized gateways
- More closed
- More preconceived

Networks

- Integrate systems
- Distributed control
- Generic gateways
- More open
- More reconfigurable

Vision: Federated Repositories and Cyberinfrastructure
What About the Cloud?

A style of computing where massively scalable IT-related capabilities are provided “as a service” using Internet technologies to multiple external customers. (Gartner, 6/08).
Cloud Services

Elastic web-based infrastructure for storage and compute
What have we learned from our users?

Over 750 organizations using DSpace or Fedora worldwide
Challenge

Digital preservation is essential but difficult to implement

- Tools and processes unproven
- Limited IT support
- Resources unavailable
- Task can be overwhelming (replication, migration, emulation, etc.)
Challenge

Barriers to making digital content more accessible and useful to researchers

• Systems not interoperable
• Heterogeneous applications/platforms
• Lack of commons standards
• Non-elastic compute capability
Advantages – Cloud Services

- Flexibility
- Scalability
- Pay for use
- Easy to implement
- Cost
Economies of Scale and Cost

Public cloud providers drive cost down through scale, location and virtualization technology

<table>
<thead>
<tr>
<th>Technology*</th>
<th>Cost Medium Datacenter</th>
<th>Cost Large Datacenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>$95 per Mbit/sec/mo</td>
<td>$13 per Mbit/sec/mo</td>
</tr>
<tr>
<td>Storage</td>
<td>$2.20 per Gbyte/mo</td>
<td>$.40 per Gbyte/mo</td>
</tr>
<tr>
<td>Admin</td>
<td>140 servers/admin</td>
<td>>1000 servers/admin</td>
</tr>
</tbody>
</table>

Large Datacenters (tens of thousands of computers)
Medium Datacenters (thousands)

Source: Hamilton, Internet-Scale Service Efficiency, LADIS Workshop (Sept 08)
Issues

- Stability
- Transparency
- Data lock in
- SLA’s
- Trust
DuraCloud

Trusted management of and access to durable digital assets in the cloud

DuraSpace

Mediating Service

Durable Store Service Layer (Foundation Service)
Durable Store Service Layer (Commercially Operated)
Durable Store Service Layer (Locally Operated)

Foundation provided Software and Configuration (Open Source)

Amazon Google EMC Local IT
Sun Microsoft Offline Backup

Compute and Storage [Cloud/Grid] Providers
DuraCloud - basics

Replicate to multiple storage providers
Replicate to multiple geographic areas
Monitor and audit digital assets
Compute services in cloud next to content

Hosted by DuraSpace not-for-profit org
Partnerships with cloud providers
“Pay for use” for services and storage
Available to run internally- open source
Additional services

- Other DuraSpace-provided services on top of content stored in the cloud
 - Search
 - Aggregation
 - Streaming
 - Migration
 - Hosting repositories
Enable others to build and deploy services and apps in DuraCloud environment
Use Cases:
DuraCloud with Cloud Storage

- Online backup for text, images, datasets, video, audio
- Enable preservation via multiple copies, geographies, administrations
- Elastic provisioning of temporary or permanent storage for projects or jobs
Use Cases: DuraCloud with Cloud Compute

- Streaming service for video
- Hosting JPEG2000 image engine
- Indexing and other processing heavy jobs
- Repositories in cloud
- Data and text mining over open data
- Aggregation and web 2.0 tools on open content and collections
DuraCloud
Underlying software

• **Open core**

 ✓ Core components available for others to build on and run

 ✓ Open source - apache license

• **Architecture to create cloud networks**

 ✓ Public clouds

 ✓ Private clouds

 ✓ University consortia

• **Also useful in research partnerships**
Critical success factors

- Ease of use - simplicity
- Trusted partner within community
- Cost effective
- Elastic, scalable, flexible
- Establish key partnerships with cloud preferred cloud service providers
- Build community of developers and users
Partners and Pilots

• Selected initial cloud providers

 - Sun Microsystems
 - Amazon Web Services
 - Rackspace
 - EMC

• Selected 2 initial pilot partners

 - Biodiversity Heritage Library
 - The New York Public Library
Pilot use cases

- Ingest large quantity of material
- Replicate to multiple cloud platforms
- Manage replication and monitoring
- Run services
Timeline

• Initial open source release – summer 2009
• Begin pilots – September 2009
• Pilot data loading and testing – Fall 2009
• Plug-ins for repository platforms – Q4 2009
• Beta for repository community - Q1 2010
• Pilot testing with compute services Q1 2010
• Report pilot results – Q1 2010
• Launch production service Q2 2010
For more information:

DuraSpace Organization: http://duraspace.org